基于局部控制和多尺度距离分析的多模态传感器融合SLAM

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ruilin Zeng;Zexuan Zheng;Zihao Pan;Lei Yu
{"title":"基于局部控制和多尺度距离分析的多模态传感器融合SLAM","authors":"Ruilin Zeng;Zexuan Zheng;Zihao Pan;Lei Yu","doi":"10.1109/JSEN.2024.3515137","DOIUrl":null,"url":null,"abstract":"Multimodal sensor fusion exhibits formidable advantages in simultaneous localization and mapping (SLAM). Nevertheless, integrating measurements from multimodal sensors at varying timestamps and frequencies can lead to the loss of certain state information, ultimately compromising performance. This article introduces a local control-based multisensors fusion algorithm that adeptly captures sensor data at different sampling rates and achieves spatial calibration, markedly enhancing the accuracy and real-time performance of extrinsic calibration. By leveraging a multiscale distance-based segmentation approach for loop closure detection, the algorithm continuously monitors and corrects accumulated trajectory errors, while fusing multimodal sensor data to bolster the accuracy and robustness of pose estimation in SLAM tasks. Experimental evaluations on the public NTU-VIRAL dataset reveal an overall precision improvement of 94.2%, 8.1%, and 86.6% over R3LIVE, CLIC, and FAST-LIVO, respectively. These results underscore the reliable accuracy and robustness of the proposed SLAM algorithm.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 3","pages":"5361-5369"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Sensors Fusion SLAM Based on Local Control and Multiscale Distance Analysis\",\"authors\":\"Ruilin Zeng;Zexuan Zheng;Zihao Pan;Lei Yu\",\"doi\":\"10.1109/JSEN.2024.3515137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal sensor fusion exhibits formidable advantages in simultaneous localization and mapping (SLAM). Nevertheless, integrating measurements from multimodal sensors at varying timestamps and frequencies can lead to the loss of certain state information, ultimately compromising performance. This article introduces a local control-based multisensors fusion algorithm that adeptly captures sensor data at different sampling rates and achieves spatial calibration, markedly enhancing the accuracy and real-time performance of extrinsic calibration. By leveraging a multiscale distance-based segmentation approach for loop closure detection, the algorithm continuously monitors and corrects accumulated trajectory errors, while fusing multimodal sensor data to bolster the accuracy and robustness of pose estimation in SLAM tasks. Experimental evaluations on the public NTU-VIRAL dataset reveal an overall precision improvement of 94.2%, 8.1%, and 86.6% over R3LIVE, CLIC, and FAST-LIVO, respectively. These results underscore the reliable accuracy and robustness of the proposed SLAM algorithm.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 3\",\"pages\":\"5361-5369\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10806497/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10806497/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

多模态传感器融合在同时定位和绘图(SLAM)方面具有强大的优势。然而,在不同的时间戳和频率下整合多模态传感器的测量结果可能会导致某些状态信息的丢失,最终影响性能。本文介绍了一种基于局部控制的多传感器融合算法,该算法能够熟练地以不同的采样率捕获传感器数据并实现空间定标,显著提高了外部定标的精度和实时性。通过利用多尺度距离分割方法进行闭环检测,该算法持续监测和纠正累积的轨迹误差,同时融合多模态传感器数据,以提高SLAM任务中姿态估计的准确性和鲁棒性。在公开的NTU-VIRAL数据集上的实验评估显示,与R3LIVE、CLIC和FAST-LIVO相比,该方法的总体精度分别提高了94.2%、8.1%和86.6%。这些结果强调了所提出的SLAM算法的可靠精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal Sensors Fusion SLAM Based on Local Control and Multiscale Distance Analysis
Multimodal sensor fusion exhibits formidable advantages in simultaneous localization and mapping (SLAM). Nevertheless, integrating measurements from multimodal sensors at varying timestamps and frequencies can lead to the loss of certain state information, ultimately compromising performance. This article introduces a local control-based multisensors fusion algorithm that adeptly captures sensor data at different sampling rates and achieves spatial calibration, markedly enhancing the accuracy and real-time performance of extrinsic calibration. By leveraging a multiscale distance-based segmentation approach for loop closure detection, the algorithm continuously monitors and corrects accumulated trajectory errors, while fusing multimodal sensor data to bolster the accuracy and robustness of pose estimation in SLAM tasks. Experimental evaluations on the public NTU-VIRAL dataset reveal an overall precision improvement of 94.2%, 8.1%, and 86.6% over R3LIVE, CLIC, and FAST-LIVO, respectively. These results underscore the reliable accuracy and robustness of the proposed SLAM algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信