Kartik Patel;Junbo Zhang;John Kimionis;Lefteris Kampianakis;Michael S. Eggleston;Jinfeng Du
{"title":"大规模双静态反向散射网络的可扩展性分析","authors":"Kartik Patel;Junbo Zhang;John Kimionis;Lefteris Kampianakis;Michael S. Eggleston;Jinfeng Du","doi":"10.1109/JRFID.2024.3514454","DOIUrl":null,"url":null,"abstract":"Backscatter radio is a promising technology for low-cost and low-power Internet-of-Things (IoT) networks. The conventional monostatic backscatter radio is constrained by its limited communication range, which restricts its utility in wide-area applications. An alternative bi-static backscatter radio architecture, characterized by a dis-aggregated illuminator and receiver, can provide enhanced coverage and, thus, can support wide-area applications. In this paper, we analyze the scalability of the bi-static backscatter radio for large-scale wide-area IoT networks consisting of a large number of unsynchronized, receiver-less tags. We introduce the Tag Drop Rate (TDR) as a measure of reliability and develop a theoretical framework to estimate TDR in terms of the network parameters. We show that under certain approximations, a small-scale prototype can emulate a large-scale network. We then use the measurements from experimental prototypes of bi-static backscatter networks (BNs) to refine the theoretical model. Finally, based on the insights derived from the theoretical model and the experimental measurements, we describe a systematic methodology for tuning the network parameters and identifying the physical layer design requirements for the reliable operation of large-scale bi-static BNs. Our analysis shows that even with a modest physical layer requirement of bit error rate (BER) 0.2, 1000 receiver-less tags can be supported with 99.9% reliability. This demonstrates the feasibility of bi-static BNs for large-scale wide-area IoT applications.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"6-16"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing the Scalability of Bi-Static Backscatter Networks for Large Scale Applications\",\"authors\":\"Kartik Patel;Junbo Zhang;John Kimionis;Lefteris Kampianakis;Michael S. Eggleston;Jinfeng Du\",\"doi\":\"10.1109/JRFID.2024.3514454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Backscatter radio is a promising technology for low-cost and low-power Internet-of-Things (IoT) networks. The conventional monostatic backscatter radio is constrained by its limited communication range, which restricts its utility in wide-area applications. An alternative bi-static backscatter radio architecture, characterized by a dis-aggregated illuminator and receiver, can provide enhanced coverage and, thus, can support wide-area applications. In this paper, we analyze the scalability of the bi-static backscatter radio for large-scale wide-area IoT networks consisting of a large number of unsynchronized, receiver-less tags. We introduce the Tag Drop Rate (TDR) as a measure of reliability and develop a theoretical framework to estimate TDR in terms of the network parameters. We show that under certain approximations, a small-scale prototype can emulate a large-scale network. We then use the measurements from experimental prototypes of bi-static backscatter networks (BNs) to refine the theoretical model. Finally, based on the insights derived from the theoretical model and the experimental measurements, we describe a systematic methodology for tuning the network parameters and identifying the physical layer design requirements for the reliable operation of large-scale bi-static BNs. Our analysis shows that even with a modest physical layer requirement of bit error rate (BER) 0.2, 1000 receiver-less tags can be supported with 99.9% reliability. This demonstrates the feasibility of bi-static BNs for large-scale wide-area IoT applications.\",\"PeriodicalId\":73291,\"journal\":{\"name\":\"IEEE journal of radio frequency identification\",\"volume\":\"9 \",\"pages\":\"6-16\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of radio frequency identification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10790881/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10790881/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Analyzing the Scalability of Bi-Static Backscatter Networks for Large Scale Applications
Backscatter radio is a promising technology for low-cost and low-power Internet-of-Things (IoT) networks. The conventional monostatic backscatter radio is constrained by its limited communication range, which restricts its utility in wide-area applications. An alternative bi-static backscatter radio architecture, characterized by a dis-aggregated illuminator and receiver, can provide enhanced coverage and, thus, can support wide-area applications. In this paper, we analyze the scalability of the bi-static backscatter radio for large-scale wide-area IoT networks consisting of a large number of unsynchronized, receiver-less tags. We introduce the Tag Drop Rate (TDR) as a measure of reliability and develop a theoretical framework to estimate TDR in terms of the network parameters. We show that under certain approximations, a small-scale prototype can emulate a large-scale network. We then use the measurements from experimental prototypes of bi-static backscatter networks (BNs) to refine the theoretical model. Finally, based on the insights derived from the theoretical model and the experimental measurements, we describe a systematic methodology for tuning the network parameters and identifying the physical layer design requirements for the reliable operation of large-scale bi-static BNs. Our analysis shows that even with a modest physical layer requirement of bit error rate (BER) 0.2, 1000 receiver-less tags can be supported with 99.9% reliability. This demonstrates the feasibility of bi-static BNs for large-scale wide-area IoT applications.