大规模双静态反向散射网络的可扩展性分析

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Kartik Patel;Junbo Zhang;John Kimionis;Lefteris Kampianakis;Michael S. Eggleston;Jinfeng Du
{"title":"大规模双静态反向散射网络的可扩展性分析","authors":"Kartik Patel;Junbo Zhang;John Kimionis;Lefteris Kampianakis;Michael S. Eggleston;Jinfeng Du","doi":"10.1109/JRFID.2024.3514454","DOIUrl":null,"url":null,"abstract":"Backscatter radio is a promising technology for low-cost and low-power Internet-of-Things (IoT) networks. The conventional monostatic backscatter radio is constrained by its limited communication range, which restricts its utility in wide-area applications. An alternative bi-static backscatter radio architecture, characterized by a dis-aggregated illuminator and receiver, can provide enhanced coverage and, thus, can support wide-area applications. In this paper, we analyze the scalability of the bi-static backscatter radio for large-scale wide-area IoT networks consisting of a large number of unsynchronized, receiver-less tags. We introduce the Tag Drop Rate (TDR) as a measure of reliability and develop a theoretical framework to estimate TDR in terms of the network parameters. We show that under certain approximations, a small-scale prototype can emulate a large-scale network. We then use the measurements from experimental prototypes of bi-static backscatter networks (BNs) to refine the theoretical model. Finally, based on the insights derived from the theoretical model and the experimental measurements, we describe a systematic methodology for tuning the network parameters and identifying the physical layer design requirements for the reliable operation of large-scale bi-static BNs. Our analysis shows that even with a modest physical layer requirement of bit error rate (BER) 0.2, 1000 receiver-less tags can be supported with 99.9% reliability. This demonstrates the feasibility of bi-static BNs for large-scale wide-area IoT applications.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"6-16"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing the Scalability of Bi-Static Backscatter Networks for Large Scale Applications\",\"authors\":\"Kartik Patel;Junbo Zhang;John Kimionis;Lefteris Kampianakis;Michael S. Eggleston;Jinfeng Du\",\"doi\":\"10.1109/JRFID.2024.3514454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Backscatter radio is a promising technology for low-cost and low-power Internet-of-Things (IoT) networks. The conventional monostatic backscatter radio is constrained by its limited communication range, which restricts its utility in wide-area applications. An alternative bi-static backscatter radio architecture, characterized by a dis-aggregated illuminator and receiver, can provide enhanced coverage and, thus, can support wide-area applications. In this paper, we analyze the scalability of the bi-static backscatter radio for large-scale wide-area IoT networks consisting of a large number of unsynchronized, receiver-less tags. We introduce the Tag Drop Rate (TDR) as a measure of reliability and develop a theoretical framework to estimate TDR in terms of the network parameters. We show that under certain approximations, a small-scale prototype can emulate a large-scale network. We then use the measurements from experimental prototypes of bi-static backscatter networks (BNs) to refine the theoretical model. Finally, based on the insights derived from the theoretical model and the experimental measurements, we describe a systematic methodology for tuning the network parameters and identifying the physical layer design requirements for the reliable operation of large-scale bi-static BNs. Our analysis shows that even with a modest physical layer requirement of bit error rate (BER) 0.2, 1000 receiver-less tags can be supported with 99.9% reliability. This demonstrates the feasibility of bi-static BNs for large-scale wide-area IoT applications.\",\"PeriodicalId\":73291,\"journal\":{\"name\":\"IEEE journal of radio frequency identification\",\"volume\":\"9 \",\"pages\":\"6-16\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of radio frequency identification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10790881/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10790881/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

反向散射无线电是低成本和低功耗物联网(IoT)网络的一项有前途的技术。传统的单台后向散射无线电受限于其有限的通信范围,限制了其在广域应用中的应用。另一种双静态反向散射无线电架构,其特点是一个分解的照明器和接收器,可以提供增强的覆盖范围,因此,可以支持广域应用。在本文中,我们分析了双静态反向散射无线电在由大量不同步、无接收器标签组成的大规模广域物联网网络中的可扩展性。我们引入标签丢失率(TDR)作为可靠性的度量,并开发了一个理论框架来根据网络参数估计TDR。我们证明了在一定的近似下,一个小规模的原型可以模拟一个大规模的网络。然后,我们使用双静态反向散射网络(BNs)实验原型的测量结果来完善理论模型。最后,基于理论模型和实验测量得出的见解,我们描述了一种系统的方法来调整网络参数并确定大规模双静态宽带网络可靠运行的物理层设计要求。我们的分析表明,即使在误码率(BER) 0.2的适度物理层要求下,也可以以99.9%的可靠性支持1000个无接收器标签。这证明了双静态宽带网络用于大规模广域物联网应用的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing the Scalability of Bi-Static Backscatter Networks for Large Scale Applications
Backscatter radio is a promising technology for low-cost and low-power Internet-of-Things (IoT) networks. The conventional monostatic backscatter radio is constrained by its limited communication range, which restricts its utility in wide-area applications. An alternative bi-static backscatter radio architecture, characterized by a dis-aggregated illuminator and receiver, can provide enhanced coverage and, thus, can support wide-area applications. In this paper, we analyze the scalability of the bi-static backscatter radio for large-scale wide-area IoT networks consisting of a large number of unsynchronized, receiver-less tags. We introduce the Tag Drop Rate (TDR) as a measure of reliability and develop a theoretical framework to estimate TDR in terms of the network parameters. We show that under certain approximations, a small-scale prototype can emulate a large-scale network. We then use the measurements from experimental prototypes of bi-static backscatter networks (BNs) to refine the theoretical model. Finally, based on the insights derived from the theoretical model and the experimental measurements, we describe a systematic methodology for tuning the network parameters and identifying the physical layer design requirements for the reliable operation of large-scale bi-static BNs. Our analysis shows that even with a modest physical layer requirement of bit error rate (BER) 0.2, 1000 receiver-less tags can be supported with 99.9% reliability. This demonstrates the feasibility of bi-static BNs for large-scale wide-area IoT applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信