无线防伪标签使用射频振荡器与石墨烯量子电容器

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yichong Ren;Chia-Heng Sun;Chien-Hao Liu;Chung-Tse Michael Wu;Pai-Yen Chen
{"title":"无线防伪标签使用射频振荡器与石墨烯量子电容器","authors":"Yichong Ren;Chia-Heng Sun;Chien-Hao Liu;Chung-Tse Michael Wu;Pai-Yen Chen","doi":"10.1109/JRFID.2025.3529343","DOIUrl":null,"url":null,"abstract":"We propose here a lightweight, reconfigurable graphene-based physical unclonable function (PUF) for wireless identification and authentication applications. Specifically, the PUF-based anti-counterfeiting label consists of a micro-coil antenna and a graphene quantum capacitor, forming an LC oscillator. Natural fluctuations in the Dirac point and residue charge density of graphene enable each graphene oscillator to have a unique radio-frequency (RF) response (i.e., electromagnetic fingerprint), whose uniqueness and entropy can be further enhanced by exploiting the exceptional point (EP)-based (near-field) wireless interrogation system. These randomized and irreproducible RF responses can be properly discretized and digitized to form a binary bitmap of cryptographic keys. Our simulation results show that PUF keys generated by graphene oscillators can exhibit high uniqueness and randomness, large encoding capacity, as well as reconfigurability enabled by electrostatically or chemically tuning the graphene’s Fermi energy. The proposed PUF-based wireless anti-counterfeiting labels may open a new pathway for the development of lightweight security protocol for radio-frequency identification (RFID), near-field communications (NFC), wireless access control, and Internet-of-things (IoTs), among other wireless applications.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":"9 ","pages":"38-45"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wireless Anti-Counterfeiting Labels Using RF Oscillators With Graphene Quantum Capacitors\",\"authors\":\"Yichong Ren;Chia-Heng Sun;Chien-Hao Liu;Chung-Tse Michael Wu;Pai-Yen Chen\",\"doi\":\"10.1109/JRFID.2025.3529343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose here a lightweight, reconfigurable graphene-based physical unclonable function (PUF) for wireless identification and authentication applications. Specifically, the PUF-based anti-counterfeiting label consists of a micro-coil antenna and a graphene quantum capacitor, forming an LC oscillator. Natural fluctuations in the Dirac point and residue charge density of graphene enable each graphene oscillator to have a unique radio-frequency (RF) response (i.e., electromagnetic fingerprint), whose uniqueness and entropy can be further enhanced by exploiting the exceptional point (EP)-based (near-field) wireless interrogation system. These randomized and irreproducible RF responses can be properly discretized and digitized to form a binary bitmap of cryptographic keys. Our simulation results show that PUF keys generated by graphene oscillators can exhibit high uniqueness and randomness, large encoding capacity, as well as reconfigurability enabled by electrostatically or chemically tuning the graphene’s Fermi energy. The proposed PUF-based wireless anti-counterfeiting labels may open a new pathway for the development of lightweight security protocol for radio-frequency identification (RFID), near-field communications (NFC), wireless access control, and Internet-of-things (IoTs), among other wireless applications.\",\"PeriodicalId\":73291,\"journal\":{\"name\":\"IEEE journal of radio frequency identification\",\"volume\":\"9 \",\"pages\":\"38-45\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal of radio frequency identification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10839325/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10839325/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们在此提出一种轻量级、可重构的基于石墨烯的物理不可克隆功能(PUF),用于无线识别和认证应用。具体来说,基于puf的防伪标签由一个微线圈天线和一个石墨烯量子电容器组成,形成一个LC振荡器。石墨烯的狄拉克点和剩余电荷密度的自然波动使每个石墨烯振荡器具有独特的射频(RF)响应(即电磁指纹),其唯一性和熵可以通过利用基于异常点(EP)的(近场)无线询问系统进一步增强。这些随机和不可复制的射频响应可以适当地离散和数字化,以形成加密密钥的二进制位图。仿真结果表明,石墨烯振荡产生的PUF密钥具有较高的唯一性和随机性,具有较大的编码容量,并且通过静电或化学调节石墨烯的费米能量可以实现可重构性。提出的基于puf的无线防伪标签可能为射频识别(RFID)、近场通信(NFC)、无线访问控制和物联网(iot)等无线应用的轻量级安全协议的发展开辟新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wireless Anti-Counterfeiting Labels Using RF Oscillators With Graphene Quantum Capacitors
We propose here a lightweight, reconfigurable graphene-based physical unclonable function (PUF) for wireless identification and authentication applications. Specifically, the PUF-based anti-counterfeiting label consists of a micro-coil antenna and a graphene quantum capacitor, forming an LC oscillator. Natural fluctuations in the Dirac point and residue charge density of graphene enable each graphene oscillator to have a unique radio-frequency (RF) response (i.e., electromagnetic fingerprint), whose uniqueness and entropy can be further enhanced by exploiting the exceptional point (EP)-based (near-field) wireless interrogation system. These randomized and irreproducible RF responses can be properly discretized and digitized to form a binary bitmap of cryptographic keys. Our simulation results show that PUF keys generated by graphene oscillators can exhibit high uniqueness and randomness, large encoding capacity, as well as reconfigurability enabled by electrostatically or chemically tuning the graphene’s Fermi energy. The proposed PUF-based wireless anti-counterfeiting labels may open a new pathway for the development of lightweight security protocol for radio-frequency identification (RFID), near-field communications (NFC), wireless access control, and Internet-of-things (IoTs), among other wireless applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信