多电池串并联逆变器二维分散载波相移方法的实现

IF 5 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Phu Cong Nguyen;Quoc Dung Phan;Dinh Tuyen Nguyen
{"title":"多电池串并联逆变器二维分散载波相移方法的实现","authors":"Phu Cong Nguyen;Quoc Dung Phan;Dinh Tuyen Nguyen","doi":"10.1109/OJPEL.2025.3529520","DOIUrl":null,"url":null,"abstract":"With regard to the research and application of power converters, scientists have focused on finding structures and researching control solutions for multilevel multiphase power converters (MMC). Connecting cells in series, parallel (2 Dimension-2D) to the MMC allows easy adjustment of the power and output voltage. The design of MMCs must ensure that the switching voltage is less than the switching voltage limit of the insulated gate bipolar transistor (IGBT), and that the 2D structure can easily adjust the voltage at each level by adding or removing several cells in series. A 2D structure can be designed for a wide power range, which can be quickly achieved by adjusting the number of cells (or multicell branches) in parallel. Currently, the use of 2D structures has only a few published studies on the aspect of DC/DC modulation. This study implements a decentralized carrier phase angle shift algorithm for multicell power converters coupled in series and parallel to supply single-phase alternating current (AC) loads. This paper proposes and verifies an algorithm to ensure that the carrier phase angles of cells in the 2D structure are evenly alternating, thereby improving the algorithm to balance the alternating current between parallel branches connecting the load. Reviews, analyses, and assessments were verified on a 2D structure simulation model including six parallel branches, each of which has six cells in Matlab/Simulink software, and verified by an experimental model including four branches, each of which has four cells using digital signal processing (DSP) TMS320F28379D as the controller.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"243-265"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10840202","citationCount":"0","resultStr":"{\"title\":\"Implementing Two Dimensions Decentralized Carrier Phase Shift Method for Multicell Serial-Parallel Inverters\",\"authors\":\"Phu Cong Nguyen;Quoc Dung Phan;Dinh Tuyen Nguyen\",\"doi\":\"10.1109/OJPEL.2025.3529520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With regard to the research and application of power converters, scientists have focused on finding structures and researching control solutions for multilevel multiphase power converters (MMC). Connecting cells in series, parallel (2 Dimension-2D) to the MMC allows easy adjustment of the power and output voltage. The design of MMCs must ensure that the switching voltage is less than the switching voltage limit of the insulated gate bipolar transistor (IGBT), and that the 2D structure can easily adjust the voltage at each level by adding or removing several cells in series. A 2D structure can be designed for a wide power range, which can be quickly achieved by adjusting the number of cells (or multicell branches) in parallel. Currently, the use of 2D structures has only a few published studies on the aspect of DC/DC modulation. This study implements a decentralized carrier phase angle shift algorithm for multicell power converters coupled in series and parallel to supply single-phase alternating current (AC) loads. This paper proposes and verifies an algorithm to ensure that the carrier phase angles of cells in the 2D structure are evenly alternating, thereby improving the algorithm to balance the alternating current between parallel branches connecting the load. Reviews, analyses, and assessments were verified on a 2D structure simulation model including six parallel branches, each of which has six cells in Matlab/Simulink software, and verified by an experimental model including four branches, each of which has four cells using digital signal processing (DSP) TMS320F28379D as the controller.\",\"PeriodicalId\":93182,\"journal\":{\"name\":\"IEEE open journal of power electronics\",\"volume\":\"6 \",\"pages\":\"243-265\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10840202\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of power electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10840202/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10840202/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在电源变换器的研究和应用方面,科学家们一直致力于寻找多电平多相电源变换器(MMC)的结构和研究控制方案。将电池串联,并联(2维- 2d)连接到MMC,可以轻松调整功率和输出电压。mmc的设计必须保证开关电压小于绝缘栅双极晶体管(IGBT)的开关电压极限,并且二维结构可以通过串联增加或减少几个单元来方便地调节每一级的电压。二维结构可以设计为宽功率范围,这可以通过并行调整细胞(或多细胞分支)的数量来快速实现。目前,使用二维结构的DC/DC调制方面的研究很少。本研究实现了一种分散载波相角移位算法,用于串联和并联的多电池电源变换器,以提供单相交流(AC)负载。本文提出并验证了一种保证二维结构中单元的载波相位角均匀交变的算法,从而改进了该算法,以平衡连接负载的并联支路之间的交流电。在Matlab/Simulink软件中对包含6个并行支路、每个支路有6个单元的二维结构仿真模型进行了回顾、分析和评估,并采用数字信号处理(DSP) TMS320F28379D作为控制器,对包含4个支路、每个支路有4个单元的实验模型进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementing Two Dimensions Decentralized Carrier Phase Shift Method for Multicell Serial-Parallel Inverters
With regard to the research and application of power converters, scientists have focused on finding structures and researching control solutions for multilevel multiphase power converters (MMC). Connecting cells in series, parallel (2 Dimension-2D) to the MMC allows easy adjustment of the power and output voltage. The design of MMCs must ensure that the switching voltage is less than the switching voltage limit of the insulated gate bipolar transistor (IGBT), and that the 2D structure can easily adjust the voltage at each level by adding or removing several cells in series. A 2D structure can be designed for a wide power range, which can be quickly achieved by adjusting the number of cells (or multicell branches) in parallel. Currently, the use of 2D structures has only a few published studies on the aspect of DC/DC modulation. This study implements a decentralized carrier phase angle shift algorithm for multicell power converters coupled in series and parallel to supply single-phase alternating current (AC) loads. This paper proposes and verifies an algorithm to ensure that the carrier phase angles of cells in the 2D structure are evenly alternating, thereby improving the algorithm to balance the alternating current between parallel branches connecting the load. Reviews, analyses, and assessments were verified on a 2D structure simulation model including six parallel branches, each of which has six cells in Matlab/Simulink software, and verified by an experimental model including four branches, each of which has four cells using digital signal processing (DSP) TMS320F28379D as the controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信