通过多个同时发射波束增强天气监视能力

David Schvartzman;Robert D. Palmer;Matthew Herndon;Mark B. Yeary
{"title":"通过多个同时发射波束增强天气监视能力","authors":"David Schvartzman;Robert D. Palmer;Matthew Herndon;Mark B. Yeary","doi":"10.1109/TRS.2025.3527882","DOIUrl":null,"url":null,"abstract":"Phased array radar (PAR) represents the future of polarimetric weather surveillance, driven by the need for high-temporal resolution observations to improve storm monitoring and precipitation analysis. This study presents a novel technique for generating multiple simultaneous transmit beams using phase-only beamforming weights. Unlike previous methods, this approach generates multiple narrow and separate transmit peaks, minimizing sensitivity loss (compared to broadened beams) and improving sidelobe isolation. Bézier surfaces are used to parametrize the element-level phases across the array, producing a smooth distribution with reduced optimization complexity. This article outlines the theoretical formulation, demonstrates simulation results of the phase-only optimization, and validates the method with experimental data collected with the fully digital Horus PAR. Validation using a point target revealed precise beam pointing with angular accuracy within <inline-formula> <tex-math>$0.1^{\\circ }\\,$ </tex-math></inline-formula>, and measurements during a severe weather event resulted in high-quality polarimetric measurements. Scatterplots comparing the Horus radar data to that from the KCRI [Weather Surveillance Radar—1988 Doppler (WSR-88D)] radar show high correlations (e.g., reflectivity correlation coefficient of 0.91), underscoring the accuracy and reliability of the approach. These findings highlight the potential of multiple simultaneous beams for the next-generation weather radar systems, enabling high-temporal resolution observations and advanced capabilities for weather surveillance.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"272-289"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10835246","citationCount":"0","resultStr":"{\"title\":\"Enhanced Weather Surveillance Capabilities With Multiple Simultaneous Transmit Beams\",\"authors\":\"David Schvartzman;Robert D. Palmer;Matthew Herndon;Mark B. Yeary\",\"doi\":\"10.1109/TRS.2025.3527882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phased array radar (PAR) represents the future of polarimetric weather surveillance, driven by the need for high-temporal resolution observations to improve storm monitoring and precipitation analysis. This study presents a novel technique for generating multiple simultaneous transmit beams using phase-only beamforming weights. Unlike previous methods, this approach generates multiple narrow and separate transmit peaks, minimizing sensitivity loss (compared to broadened beams) and improving sidelobe isolation. Bézier surfaces are used to parametrize the element-level phases across the array, producing a smooth distribution with reduced optimization complexity. This article outlines the theoretical formulation, demonstrates simulation results of the phase-only optimization, and validates the method with experimental data collected with the fully digital Horus PAR. Validation using a point target revealed precise beam pointing with angular accuracy within <inline-formula> <tex-math>$0.1^{\\\\circ }\\\\,$ </tex-math></inline-formula>, and measurements during a severe weather event resulted in high-quality polarimetric measurements. Scatterplots comparing the Horus radar data to that from the KCRI [Weather Surveillance Radar—1988 Doppler (WSR-88D)] radar show high correlations (e.g., reflectivity correlation coefficient of 0.91), underscoring the accuracy and reliability of the approach. These findings highlight the potential of multiple simultaneous beams for the next-generation weather radar systems, enabling high-temporal resolution observations and advanced capabilities for weather surveillance.\",\"PeriodicalId\":100645,\"journal\":{\"name\":\"IEEE Transactions on Radar Systems\",\"volume\":\"3 \",\"pages\":\"272-289\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10835246\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radar Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10835246/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10835246/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相控阵雷达(PAR)代表了极化天气监测的未来,其驱动因素是对高时间分辨率观测的需求,以改善风暴监测和降水分析。本研究提出了一种利用纯相位波束形成权重产生多个同时发射波束的新技术。与以前的方法不同,这种方法产生多个狭窄和分离的发射峰,最大限度地减少灵敏度损失(与加宽波束相比)并提高副瓣隔离。bsamizier曲面用于参数化整个阵列的单元级相位,产生平滑分布,降低了优化复杂性。本文概述了理论公式,演示了纯相位优化的仿真结果,并用全数字Horus PAR收集的实验数据验证了该方法。使用点目标进行验证,显示了精确的光束指向,角精度在0.1^{\circ}\,$,以及在恶劣天气事件期间的测量结果,从而获得了高质量的偏振测量。将荷鲁斯雷达数据与KCRI[气象监测雷达- 1988多普勒(WSR-88D)]雷达数据进行比较的散点图显示出高相关性(例如,反射率相关系数为0.91),强调了该方法的准确性和可靠性。这些发现突出了下一代天气雷达系统的多同步波束的潜力,使高时间分辨率观测和先进的天气监视能力成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Weather Surveillance Capabilities With Multiple Simultaneous Transmit Beams
Phased array radar (PAR) represents the future of polarimetric weather surveillance, driven by the need for high-temporal resolution observations to improve storm monitoring and precipitation analysis. This study presents a novel technique for generating multiple simultaneous transmit beams using phase-only beamforming weights. Unlike previous methods, this approach generates multiple narrow and separate transmit peaks, minimizing sensitivity loss (compared to broadened beams) and improving sidelobe isolation. Bézier surfaces are used to parametrize the element-level phases across the array, producing a smooth distribution with reduced optimization complexity. This article outlines the theoretical formulation, demonstrates simulation results of the phase-only optimization, and validates the method with experimental data collected with the fully digital Horus PAR. Validation using a point target revealed precise beam pointing with angular accuracy within $0.1^{\circ }\,$ , and measurements during a severe weather event resulted in high-quality polarimetric measurements. Scatterplots comparing the Horus radar data to that from the KCRI [Weather Surveillance Radar—1988 Doppler (WSR-88D)] radar show high correlations (e.g., reflectivity correlation coefficient of 0.91), underscoring the accuracy and reliability of the approach. These findings highlight the potential of multiple simultaneous beams for the next-generation weather radar systems, enabling high-temporal resolution observations and advanced capabilities for weather surveillance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信