D. Pelosi;L. Trombetti;F. Gallorini;P. A. Ottaviano;L. Barelli
{"title":"应用于电动汽车的钠离子电池健康状态在线预测与监测","authors":"D. Pelosi;L. Trombetti;F. Gallorini;P. A. Ottaviano;L. Barelli","doi":"10.1109/OJIA.2025.3527721","DOIUrl":null,"url":null,"abstract":"Na-ion batteries are growing interest due to their sustainability and low cost. A wide implementation in stationary applications, but also for short range transportation, is envisaged. This is further supported by the recent progress on Na-ion cells with increased energy density. To this regards, the development of procedures for real-time assessment of batteries state of health is of crucial relevance. The present paper provides an innovative procedure to assess sodium-ion battery capacity fading based on the application of discrete wavelet transform to voltage signals, acquired once a certain load pattern is applied at the battery terminals. The procedure development is provided through Na-ion cell aging test. During all the test battery capacity measurements are carried out. Root mean square error (RMSE) between assessed and measured values equals 1.18%. Moreover, during the aging test significant differences between performance evolution of Na-ion and NCR Li-ion cells are highlighted and discussed.","PeriodicalId":100629,"journal":{"name":"IEEE Open Journal of Industry Applications","volume":"6 ","pages":"59-68"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10834587","citationCount":"0","resultStr":"{\"title\":\"Advanced Online State-of-Health Prediction and Monitoring of Na-Ion Battery for Electric Vehicles Application\",\"authors\":\"D. Pelosi;L. Trombetti;F. Gallorini;P. A. Ottaviano;L. Barelli\",\"doi\":\"10.1109/OJIA.2025.3527721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Na-ion batteries are growing interest due to their sustainability and low cost. A wide implementation in stationary applications, but also for short range transportation, is envisaged. This is further supported by the recent progress on Na-ion cells with increased energy density. To this regards, the development of procedures for real-time assessment of batteries state of health is of crucial relevance. The present paper provides an innovative procedure to assess sodium-ion battery capacity fading based on the application of discrete wavelet transform to voltage signals, acquired once a certain load pattern is applied at the battery terminals. The procedure development is provided through Na-ion cell aging test. During all the test battery capacity measurements are carried out. Root mean square error (RMSE) between assessed and measured values equals 1.18%. Moreover, during the aging test significant differences between performance evolution of Na-ion and NCR Li-ion cells are highlighted and discussed.\",\"PeriodicalId\":100629,\"journal\":{\"name\":\"IEEE Open Journal of Industry Applications\",\"volume\":\"6 \",\"pages\":\"59-68\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10834587\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Industry Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10834587/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Industry Applications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10834587/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Advanced Online State-of-Health Prediction and Monitoring of Na-Ion Battery for Electric Vehicles Application
Na-ion batteries are growing interest due to their sustainability and low cost. A wide implementation in stationary applications, but also for short range transportation, is envisaged. This is further supported by the recent progress on Na-ion cells with increased energy density. To this regards, the development of procedures for real-time assessment of batteries state of health is of crucial relevance. The present paper provides an innovative procedure to assess sodium-ion battery capacity fading based on the application of discrete wavelet transform to voltage signals, acquired once a certain load pattern is applied at the battery terminals. The procedure development is provided through Na-ion cell aging test. During all the test battery capacity measurements are carried out. Root mean square error (RMSE) between assessed and measured values equals 1.18%. Moreover, during the aging test significant differences between performance evolution of Na-ion and NCR Li-ion cells are highlighted and discussed.