用co9s8修饰CoS纳米片构建层次化中空微球用于高性能钠存储

Yamei Wang , Rui Wu , Xiaobin Niu , Hanchao Li , Jun Song Chen , Wei Li
{"title":"用co9s8修饰CoS纳米片构建层次化中空微球用于高性能钠存储","authors":"Yamei Wang ,&nbsp;Rui Wu ,&nbsp;Xiaobin Niu ,&nbsp;Hanchao Li ,&nbsp;Jun Song Chen ,&nbsp;Wei Li","doi":"10.1016/j.nxener.2024.100230","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal sulfides have drawn increasing attention as anode materials for sodium-ion batteries (SIBs) due to their high theoretical capacities. However, their practical application is still hindered by the rapid decay of capacity and severe volume variation during cycling. Herein, we constructed a hollow microspheres material composed of Co<sub>9</sub>S<sub>8</sub>-modified CoS nanosheets with the heterostructured interface through a one-step solvothermal method. When applied as the anode for SIBs, CoS/Co<sub>9</sub>S<sub>8</sub> exhibited a superior specific capacity of 600 mAh g<sup>−1</sup> after 100 cycles at 0.5 A g<sup>−1</sup>, and a remarkable cycling performance of 456 mAh g<sup>−1</sup> after 1500 cycles at 5 A g<sup>−1</sup>. The outstanding electrochemical performance can be owed to the unique three-dimensional hollow hierarchical structure, which can effectively alleviate volume expansion during cycling. Moreover, density functional theory calculation further verified the improved electronic conductivity and structural stability because of the CoS/Co<sub>9</sub>S<sub>8</sub> heterostructure.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"7 ","pages":"Article 100230"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing hierarchical hollow microspheres with Co9S8-modified CoS nanosheets for high-performance sodium storage\",\"authors\":\"Yamei Wang ,&nbsp;Rui Wu ,&nbsp;Xiaobin Niu ,&nbsp;Hanchao Li ,&nbsp;Jun Song Chen ,&nbsp;Wei Li\",\"doi\":\"10.1016/j.nxener.2024.100230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Transition metal sulfides have drawn increasing attention as anode materials for sodium-ion batteries (SIBs) due to their high theoretical capacities. However, their practical application is still hindered by the rapid decay of capacity and severe volume variation during cycling. Herein, we constructed a hollow microspheres material composed of Co<sub>9</sub>S<sub>8</sub>-modified CoS nanosheets with the heterostructured interface through a one-step solvothermal method. When applied as the anode for SIBs, CoS/Co<sub>9</sub>S<sub>8</sub> exhibited a superior specific capacity of 600 mAh g<sup>−1</sup> after 100 cycles at 0.5 A g<sup>−1</sup>, and a remarkable cycling performance of 456 mAh g<sup>−1</sup> after 1500 cycles at 5 A g<sup>−1</sup>. The outstanding electrochemical performance can be owed to the unique three-dimensional hollow hierarchical structure, which can effectively alleviate volume expansion during cycling. Moreover, density functional theory calculation further verified the improved electronic conductivity and structural stability because of the CoS/Co<sub>9</sub>S<sub>8</sub> heterostructure.</div></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":\"7 \",\"pages\":\"Article 100230\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X24001352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24001352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属硫化物作为钠离子电池的负极材料,由于其较高的理论容量而受到越来越多的关注。然而,它们的实际应用仍然受到循环过程中容量快速衰减和严重体积变化的阻碍。本文采用一步溶剂热法构建了具有异质结构界面的co9s8修饰的CoS纳米片组成的空心微球材料。当用作sib阳极时,CoS/Co9S8在0.5 a g−1下循环100次后的比容量为600 mAh g−1,在5 a g−1下循环1500次后的循环性能为456 mAh g−1。优异的电化学性能归功于其独特的三维中空分层结构,可有效缓解循环过程中的体积膨胀。此外,密度泛函理论计算进一步验证了CoS/Co9S8异质结构提高了电子导电性和结构稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing hierarchical hollow microspheres with Co9S8-modified CoS nanosheets for high-performance sodium storage
Transition metal sulfides have drawn increasing attention as anode materials for sodium-ion batteries (SIBs) due to their high theoretical capacities. However, their practical application is still hindered by the rapid decay of capacity and severe volume variation during cycling. Herein, we constructed a hollow microspheres material composed of Co9S8-modified CoS nanosheets with the heterostructured interface through a one-step solvothermal method. When applied as the anode for SIBs, CoS/Co9S8 exhibited a superior specific capacity of 600 mAh g−1 after 100 cycles at 0.5 A g−1, and a remarkable cycling performance of 456 mAh g−1 after 1500 cycles at 5 A g−1. The outstanding electrochemical performance can be owed to the unique three-dimensional hollow hierarchical structure, which can effectively alleviate volume expansion during cycling. Moreover, density functional theory calculation further verified the improved electronic conductivity and structural stability because of the CoS/Co9S8 heterostructure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信