涉及速度梯度张量的三维液晶方程的全局正则性

IF 2.3 2区 数学 Q1 MATHEMATICS
Lingling Zhao
{"title":"涉及速度梯度张量的三维液晶方程的全局正则性","authors":"Lingling Zhao","doi":"10.1016/j.jde.2025.01.075","DOIUrl":null,"url":null,"abstract":"<div><div>This paper show that the weak solution is regular via one entry of the velocity gradient tensor and the horizontal derivative components of orientation field for 3D nematic liquid crystal equations, which is an improved version for previous ones. Several regular criteria will be given, among which the endpoint regular criteria be included.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"426 ","pages":"Pages 434-453"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the global regularity to 3D liquid crystal equations involving one entry of the velocity gradient tensor\",\"authors\":\"Lingling Zhao\",\"doi\":\"10.1016/j.jde.2025.01.075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper show that the weak solution is regular via one entry of the velocity gradient tensor and the horizontal derivative components of orientation field for 3D nematic liquid crystal equations, which is an improved version for previous ones. Several regular criteria will be given, among which the endpoint regular criteria be included.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"426 \",\"pages\":\"Pages 434-453\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625000889\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625000889","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了三维向列液晶方程的弱解通过速度梯度张量和方向场的水平导数分量的一个入口是规则的,这是对以往方程的改进。将给出几个常规标准,其中包括端点常规标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the global regularity to 3D liquid crystal equations involving one entry of the velocity gradient tensor
This paper show that the weak solution is regular via one entry of the velocity gradient tensor and the horizontal derivative components of orientation field for 3D nematic liquid crystal equations, which is an improved version for previous ones. Several regular criteria will be given, among which the endpoint regular criteria be included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信