一步快速绿色合成ZnFe2O4-ZnO纳米复合材料:可见光下对有机染料的高效光催化活性和光致发光应用

Q1 Environmental Science
E.Vinay Kumar , R. Harini , Anitha , B.E. Kumara Swamy , G. Nagaraju
{"title":"一步快速绿色合成ZnFe2O4-ZnO纳米复合材料:可见光下对有机染料的高效光催化活性和光致发光应用","authors":"E.Vinay Kumar ,&nbsp;R. Harini ,&nbsp;Anitha ,&nbsp;B.E. Kumara Swamy ,&nbsp;G. Nagaraju","doi":"10.1016/j.enmm.2024.101036","DOIUrl":null,"url":null,"abstract":"<div><div>One of the major risks to the ecosystem is the pollution of water resulting from organic dyes. For scientists, the elimination of dyes from water has remained a challenge. The development of heterostructure photocatalysts featuring enhanced photogenerated charge carriers has attracted significant interest in recent times. The development of a trustworthy, reliable, affordable, and environmentally friendly process for the fabrication of photocatalysts is the main motivation for this research project. In this research work, we presented the easy, affordable green solution combustion process for synthesizing ZnFe<sub>2</sub>O<sub>4</sub>-ZnO nanocomposite (NCs) using <em>Btea monosperma</em> leaves extract. The synthesized heterostructure is extensively characterized using XRD, FT-IR, UV–Vis, SEM EDX, and PL Spectroscopy. Studies on photoluminescence emission were conducted, and the CIE diagram revealed green emission. The characteristic green emission of ZFO NCs facilitates the tracing of LFPs on a variety of surfaces. Hence, ZFO NCs may therefore have use in the field of forensic sciences. Under visible light, the photocatalyst exhibits a remarkable 95 % degradation efficiency for Rose Bengal dye. Additionally, the ZnFe<sub>2</sub>O<sub>4</sub>-ZnO heterostructure’s reusability was examined, and even after four cycles, the level of photocatalytic activity did not drop much. Therefore, it is a potential photocatalyst for the processing of organic colours.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101036"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One step facile green synthesis of ZnFe2O4-ZnO Nanocomposite: Efficient photocatalytic activity towards organic dyes under visible light and photoluminescence applications\",\"authors\":\"E.Vinay Kumar ,&nbsp;R. Harini ,&nbsp;Anitha ,&nbsp;B.E. Kumara Swamy ,&nbsp;G. Nagaraju\",\"doi\":\"10.1016/j.enmm.2024.101036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>One of the major risks to the ecosystem is the pollution of water resulting from organic dyes. For scientists, the elimination of dyes from water has remained a challenge. The development of heterostructure photocatalysts featuring enhanced photogenerated charge carriers has attracted significant interest in recent times. The development of a trustworthy, reliable, affordable, and environmentally friendly process for the fabrication of photocatalysts is the main motivation for this research project. In this research work, we presented the easy, affordable green solution combustion process for synthesizing ZnFe<sub>2</sub>O<sub>4</sub>-ZnO nanocomposite (NCs) using <em>Btea monosperma</em> leaves extract. The synthesized heterostructure is extensively characterized using XRD, FT-IR, UV–Vis, SEM EDX, and PL Spectroscopy. Studies on photoluminescence emission were conducted, and the CIE diagram revealed green emission. The characteristic green emission of ZFO NCs facilitates the tracing of LFPs on a variety of surfaces. Hence, ZFO NCs may therefore have use in the field of forensic sciences. Under visible light, the photocatalyst exhibits a remarkable 95 % degradation efficiency for Rose Bengal dye. Additionally, the ZnFe<sub>2</sub>O<sub>4</sub>-ZnO heterostructure’s reusability was examined, and even after four cycles, the level of photocatalytic activity did not drop much. Therefore, it is a potential photocatalyst for the processing of organic colours.</div></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":\"23 \",\"pages\":\"Article 101036\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215153224001247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224001247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

生态系统面临的主要风险之一是由有机染料引起的水污染。对科学家来说,从水中去除染料仍然是一个挑战。近年来,以增强型光生电荷载体为特征的异质结构光催化剂的发展引起了人们的广泛关注。开发一种值得信赖、可靠、经济、环保的光催化剂制造工艺是本研究项目的主要动机。在这项研究工作中,我们提出了一种简单、经济的绿色溶液燃烧方法来合成ZnFe2O4-ZnO纳米复合材料(NCs)。利用XRD, FT-IR, UV-Vis, SEM EDX和PL光谱对合成的异质结构进行了广泛的表征。对光致发光进行了研究,CIE图显示绿色发光。ZFO纳米材料的绿色发光特性使得lfp在各种表面上的示踪成为可能。因此,ZFO NCs因此可用于法医科学领域。在可见光下,该光催化剂对孟加拉玫瑰染料的降解效率达到了95%。此外,研究了ZnFe2O4-ZnO异质结构的可重复使用性,即使经过4次循环,其光催化活性水平也没有明显下降。因此,它是处理有机颜色的潜在光催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

One step facile green synthesis of ZnFe2O4-ZnO Nanocomposite: Efficient photocatalytic activity towards organic dyes under visible light and photoluminescence applications

One step facile green synthesis of ZnFe2O4-ZnO Nanocomposite: Efficient photocatalytic activity towards organic dyes under visible light and photoluminescence applications
One of the major risks to the ecosystem is the pollution of water resulting from organic dyes. For scientists, the elimination of dyes from water has remained a challenge. The development of heterostructure photocatalysts featuring enhanced photogenerated charge carriers has attracted significant interest in recent times. The development of a trustworthy, reliable, affordable, and environmentally friendly process for the fabrication of photocatalysts is the main motivation for this research project. In this research work, we presented the easy, affordable green solution combustion process for synthesizing ZnFe2O4-ZnO nanocomposite (NCs) using Btea monosperma leaves extract. The synthesized heterostructure is extensively characterized using XRD, FT-IR, UV–Vis, SEM EDX, and PL Spectroscopy. Studies on photoluminescence emission were conducted, and the CIE diagram revealed green emission. The characteristic green emission of ZFO NCs facilitates the tracing of LFPs on a variety of surfaces. Hence, ZFO NCs may therefore have use in the field of forensic sciences. Under visible light, the photocatalyst exhibits a remarkable 95 % degradation efficiency for Rose Bengal dye. Additionally, the ZnFe2O4-ZnO heterostructure’s reusability was examined, and even after four cycles, the level of photocatalytic activity did not drop much. Therefore, it is a potential photocatalyst for the processing of organic colours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Nanotechnology, Monitoring and Management
Environmental Nanotechnology, Monitoring and Management Environmental Science-Water Science and Technology
CiteScore
13.00
自引率
0.00%
发文量
132
审稿时长
48 days
期刊介绍: Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信