细菌辅助制备硫化镉/聚乙烯醇纳米复合材料及其生物应用

Q1 Environmental Science
S. Rajeshkumar , C. Malarkodi , Arpita Roy , Tharani Munusamy , Ashish Kumar , Hendrix Yulis Setyawan , Kuldeep Sharma , Rajan Verma
{"title":"细菌辅助制备硫化镉/聚乙烯醇纳米复合材料及其生物应用","authors":"S. Rajeshkumar ,&nbsp;C. Malarkodi ,&nbsp;Arpita Roy ,&nbsp;Tharani Munusamy ,&nbsp;Ashish Kumar ,&nbsp;Hendrix Yulis Setyawan ,&nbsp;Kuldeep Sharma ,&nbsp;Rajan Verma","doi":"10.1016/j.enmm.2024.101030","DOIUrl":null,"url":null,"abstract":"<div><div>Cadmium sulfide is one of the most vital materials, and this research discusses the environmentally friendly synthesis of CdS nanoparticles using <em>Bacillus subtilis</em>. Bacterial synthesis was utilized to produce cadmium sulfide nanoparticles within Polyvinyl Alcohol (PVA) at four distinct concentrations. This study focused on generating CdS/ PVA films, where cadmium sulfide nanoparticles of varying sizes were dispersed within polyvinyl alcohol matrices. The PL (Photoluminescence) spectrum and UV–visible spectrum showed the CdS/PVA quantum confinement effect. TEM and XRD analyses demonstrate the formation of well-dispersed CdS nanoparticles and CdS films with a cubic phase embedded within the PVA matrix. The morphological changes between the nanocomposite clearly showed in the TEM images. Primarily spherical shaped CdS nanoparticles were formed as observed in the SEM analysis, and it was found that the CdS/PVA nanocomposite are different like shapeless. FTIR spectrums of CdS/PVA nanocomposites in different concentration shows the participation of biomolecules in the nanocomposite’s formation. The prepared nanocomposite showed potential anti-inflammatory, antioxidant and antimicrobial activity against microbial pathogens. Thus CdS/PVA nanocomposites can be used in many potential biomedical applications.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101030"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial assisted preparation of cadmium sulfide/polyvinyl alcohol nanocomposites and its biological applications\",\"authors\":\"S. Rajeshkumar ,&nbsp;C. Malarkodi ,&nbsp;Arpita Roy ,&nbsp;Tharani Munusamy ,&nbsp;Ashish Kumar ,&nbsp;Hendrix Yulis Setyawan ,&nbsp;Kuldeep Sharma ,&nbsp;Rajan Verma\",\"doi\":\"10.1016/j.enmm.2024.101030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cadmium sulfide is one of the most vital materials, and this research discusses the environmentally friendly synthesis of CdS nanoparticles using <em>Bacillus subtilis</em>. Bacterial synthesis was utilized to produce cadmium sulfide nanoparticles within Polyvinyl Alcohol (PVA) at four distinct concentrations. This study focused on generating CdS/ PVA films, where cadmium sulfide nanoparticles of varying sizes were dispersed within polyvinyl alcohol matrices. The PL (Photoluminescence) spectrum and UV–visible spectrum showed the CdS/PVA quantum confinement effect. TEM and XRD analyses demonstrate the formation of well-dispersed CdS nanoparticles and CdS films with a cubic phase embedded within the PVA matrix. The morphological changes between the nanocomposite clearly showed in the TEM images. Primarily spherical shaped CdS nanoparticles were formed as observed in the SEM analysis, and it was found that the CdS/PVA nanocomposite are different like shapeless. FTIR spectrums of CdS/PVA nanocomposites in different concentration shows the participation of biomolecules in the nanocomposite’s formation. The prepared nanocomposite showed potential anti-inflammatory, antioxidant and antimicrobial activity against microbial pathogens. Thus CdS/PVA nanocomposites can be used in many potential biomedical applications.</div></div>\",\"PeriodicalId\":11716,\"journal\":{\"name\":\"Environmental Nanotechnology, Monitoring and Management\",\"volume\":\"23 \",\"pages\":\"Article 101030\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Nanotechnology, Monitoring and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215153224001181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224001181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

硫化镉是其中最重要的材料之一,本研究探讨了利用枯草芽孢杆菌环保合成CdS纳米颗粒的方法。利用细菌合成在聚乙烯醇(PVA)中以四种不同浓度生产硫化镉纳米颗粒。本研究的重点是生成CdS/ PVA薄膜,其中不同尺寸的硫化镉纳米颗粒分散在聚乙烯醇基质中。光致发光光谱和紫外可见光谱显示CdS/PVA量子约束效应。TEM和XRD分析表明,在PVA基体中形成了分散良好的CdS纳米颗粒和立方相嵌套的CdS薄膜。TEM图像显示了纳米复合材料之间的形态变化。SEM分析发现,CdS/PVA纳米复合材料主要形成球形CdS纳米颗粒,CdS/PVA纳米复合材料具有不同的形状。不同浓度CdS/PVA纳米复合材料的FTIR光谱表明生物分子参与了纳米复合材料的形成。所制备的纳米复合材料对微生物病原体具有潜在的抗炎、抗氧化和抗菌活性。因此,CdS/聚乙烯醇纳米复合材料可用于许多潜在的生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bacterial assisted preparation of cadmium sulfide/polyvinyl alcohol nanocomposites and its biological applications

Bacterial assisted preparation of cadmium sulfide/polyvinyl alcohol nanocomposites and its biological applications
Cadmium sulfide is one of the most vital materials, and this research discusses the environmentally friendly synthesis of CdS nanoparticles using Bacillus subtilis. Bacterial synthesis was utilized to produce cadmium sulfide nanoparticles within Polyvinyl Alcohol (PVA) at four distinct concentrations. This study focused on generating CdS/ PVA films, where cadmium sulfide nanoparticles of varying sizes were dispersed within polyvinyl alcohol matrices. The PL (Photoluminescence) spectrum and UV–visible spectrum showed the CdS/PVA quantum confinement effect. TEM and XRD analyses demonstrate the formation of well-dispersed CdS nanoparticles and CdS films with a cubic phase embedded within the PVA matrix. The morphological changes between the nanocomposite clearly showed in the TEM images. Primarily spherical shaped CdS nanoparticles were formed as observed in the SEM analysis, and it was found that the CdS/PVA nanocomposite are different like shapeless. FTIR spectrums of CdS/PVA nanocomposites in different concentration shows the participation of biomolecules in the nanocomposite’s formation. The prepared nanocomposite showed potential anti-inflammatory, antioxidant and antimicrobial activity against microbial pathogens. Thus CdS/PVA nanocomposites can be used in many potential biomedical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Nanotechnology, Monitoring and Management
Environmental Nanotechnology, Monitoring and Management Environmental Science-Water Science and Technology
CiteScore
13.00
自引率
0.00%
发文量
132
审稿时长
48 days
期刊介绍: Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信