低维碳材料中缺陷和杂质对非均相电子转移的影响:理论与实验

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL
Sergey V. Pavlov
{"title":"低维碳材料中缺陷和杂质对非均相电子转移的影响:理论与实验","authors":"Sergey V. Pavlov","doi":"10.1016/j.coelec.2024.101626","DOIUrl":null,"url":null,"abstract":"<div><div>Low-dimensional carbon-based materials hold significant potential for electrocatalytic applications. However, the role of defects and various additives in enhancing their electrochemical properties remains a subject of ongoing debate due to contradictory experimental data. Moreover, the complex interplay of various factors complicates the interpretation of defects-related effects. This mini-review presents recent studies on the role of defects in heterogeneous electron transfer, covering both experimental findings and theoretical modeling. It emphasizes the need for further development in electron transfer theory and experimental techniques to better elucidate the mechanisms behind the electrocatalytic behavior of defects.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"49 ","pages":"Article 101626"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of defects and impurities in low-dimensional carbon materials on heterogeneous electron transfer: Theory and experiments\",\"authors\":\"Sergey V. Pavlov\",\"doi\":\"10.1016/j.coelec.2024.101626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Low-dimensional carbon-based materials hold significant potential for electrocatalytic applications. However, the role of defects and various additives in enhancing their electrochemical properties remains a subject of ongoing debate due to contradictory experimental data. Moreover, the complex interplay of various factors complicates the interpretation of defects-related effects. This mini-review presents recent studies on the role of defects in heterogeneous electron transfer, covering both experimental findings and theoretical modeling. It emphasizes the need for further development in electron transfer theory and experimental techniques to better elucidate the mechanisms behind the electrocatalytic behavior of defects.</div></div>\",\"PeriodicalId\":11028,\"journal\":{\"name\":\"Current Opinion in Electrochemistry\",\"volume\":\"49 \",\"pages\":\"Article 101626\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Electrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245191032400187X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245191032400187X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

低维碳基材料具有电催化应用的巨大潜力。然而,由于实验数据的矛盾,缺陷和各种添加剂在提高其电化学性能方面的作用仍然是一个持续争论的话题。此外,各种因素的复杂相互作用使缺陷相关效应的解释复杂化。这篇综述介绍了最近关于缺陷在非均相电子转移中的作用的研究,包括实验结果和理论模型。强调需要进一步发展电子转移理论和实验技术,以更好地阐明缺陷电催化行为背后的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of defects and impurities in low-dimensional carbon materials on heterogeneous electron transfer: Theory and experiments
Low-dimensional carbon-based materials hold significant potential for electrocatalytic applications. However, the role of defects and various additives in enhancing their electrochemical properties remains a subject of ongoing debate due to contradictory experimental data. Moreover, the complex interplay of various factors complicates the interpretation of defects-related effects. This mini-review presents recent studies on the role of defects in heterogeneous electron transfer, covering both experimental findings and theoretical modeling. It emphasizes the need for further development in electron transfer theory and experimental techniques to better elucidate the mechanisms behind the electrocatalytic behavior of defects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Electrochemistry
Current Opinion in Electrochemistry Chemistry-Analytical Chemistry
CiteScore
14.00
自引率
5.90%
发文量
272
审稿时长
73 days
期刊介绍: The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner: 1.The views of experts on current advances in electrochemistry in a clear and readable form. 2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle: • Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信