{"title":"非对称振荡的Birkhoff范式和扭转系数","authors":"Yaqi Liang, Xiong Li","doi":"10.1016/j.jde.2025.01.040","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the Birkhoff normal form around the elliptic fixed point for the asymmetric oscillation<span><span><span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>−</mo><mi>b</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>=</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>}</mo></math></span>, <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><mo>−</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>}</mo></math></span>, <span><math><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>6</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is 2<em>π</em> periodic with zero mean value with respect to <em>t</em>, <em>a</em> and <em>b</em> are two different positive constants satisfying <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mi>a</mi></mrow></msqrt></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mi>b</mi></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow><mo>∈</mo><mi>R</mi><mo>﹨</mo><mi>Q</mi></math></span>. We shall establish an explicit construction of the Birkhoff transformation and thus obtain the explicit formula for the third twist coefficient where the first two twist coefficients are both zero. As an application, we propose a sufficient condition for <em>f</em> such that for a given parameter <span><math><mi>a</mi><mo>></mo><mn>0</mn></math></span> and any given bounded closed interval <span><math><mi>I</mi><mo>⊂</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><msqrt><mrow><mi>a</mi></mrow></msqrt></mrow></mfrac><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></mrow></math></span>, there exists a finite set <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>⊂</mo><mi>I</mi></math></span> such that for any <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>I</mi><mo>﹨</mo><mo>(</mo><mi>Q</mi><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>)</mo></math></span>, the solutions of the asymmetric oscillation are all bounded.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"425 ","pages":"Pages 434-469"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Birkhoff normal form and twist coefficients of asymmetric oscillations\",\"authors\":\"Yaqi Liang, Xiong Li\",\"doi\":\"10.1016/j.jde.2025.01.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the Birkhoff normal form around the elliptic fixed point for the asymmetric oscillation<span><span><span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>−</mo><mi>b</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>=</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>}</mo></math></span>, <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>=</mo><mi>max</mi><mo></mo><mo>{</mo><mo>−</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>}</mo></math></span>, <span><math><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>6</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is 2<em>π</em> periodic with zero mean value with respect to <em>t</em>, <em>a</em> and <em>b</em> are two different positive constants satisfying <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mi>a</mi></mrow></msqrt></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mi>b</mi></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow><mo>∈</mo><mi>R</mi><mo>﹨</mo><mi>Q</mi></math></span>. We shall establish an explicit construction of the Birkhoff transformation and thus obtain the explicit formula for the third twist coefficient where the first two twist coefficients are both zero. As an application, we propose a sufficient condition for <em>f</em> such that for a given parameter <span><math><mi>a</mi><mo>></mo><mn>0</mn></math></span> and any given bounded closed interval <span><math><mi>I</mi><mo>⊂</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><msqrt><mrow><mi>a</mi></mrow></msqrt></mrow></mfrac><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></mrow></math></span>, there exists a finite set <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>⊂</mo><mi>I</mi></math></span> such that for any <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>I</mi><mo>﹨</mo><mo>(</mo><mi>Q</mi><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>)</mo></math></span>, the solutions of the asymmetric oscillation are all bounded.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"425 \",\"pages\":\"Pages 434-469\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625000476\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625000476","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Birkhoff normal form and twist coefficients of asymmetric oscillations
In this paper, we study the Birkhoff normal form around the elliptic fixed point for the asymmetric oscillation where , , is 2π periodic with zero mean value with respect to t, a and b are two different positive constants satisfying . We shall establish an explicit construction of the Birkhoff transformation and thus obtain the explicit formula for the third twist coefficient where the first two twist coefficients are both zero. As an application, we propose a sufficient condition for f such that for a given parameter and any given bounded closed interval , there exists a finite set such that for any , the solutions of the asymmetric oscillation are all bounded.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics