非对称振荡的Birkhoff范式和扭转系数

IF 2.3 2区 数学 Q1 MATHEMATICS
Yaqi Liang, Xiong Li
{"title":"非对称振荡的Birkhoff范式和扭转系数","authors":"Yaqi Liang,&nbsp;Xiong Li","doi":"10.1016/j.jde.2025.01.040","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the Birkhoff normal form around the elliptic fixed point for the asymmetric oscillation<span><span><span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>−</mo><mi>b</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>=</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>}</mo></math></span>, <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>=</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mo>−</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>}</mo></math></span>, <span><math><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>6</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is 2<em>π</em> periodic with zero mean value with respect to <em>t</em>, <em>a</em> and <em>b</em> are two different positive constants satisfying <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mi>a</mi></mrow></msqrt></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mi>b</mi></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow><mo>∈</mo><mi>R</mi><mo>﹨</mo><mi>Q</mi></math></span>. We shall establish an explicit construction of the Birkhoff transformation and thus obtain the explicit formula for the third twist coefficient where the first two twist coefficients are both zero. As an application, we propose a sufficient condition for <em>f</em> such that for a given parameter <span><math><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span> and any given bounded closed interval <span><math><mi>I</mi><mo>⊂</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><msqrt><mrow><mi>a</mi></mrow></msqrt></mrow></mfrac><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></mrow></math></span>, there exists a finite set <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>⊂</mo><mi>I</mi></math></span> such that for any <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>I</mi><mo>﹨</mo><mo>(</mo><mi>Q</mi><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>)</mo></math></span>, the solutions of the asymmetric oscillation are all bounded.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"425 ","pages":"Pages 434-469"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Birkhoff normal form and twist coefficients of asymmetric oscillations\",\"authors\":\"Yaqi Liang,&nbsp;Xiong Li\",\"doi\":\"10.1016/j.jde.2025.01.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the Birkhoff normal form around the elliptic fixed point for the asymmetric oscillation<span><span><span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>−</mo><mi>b</mi><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>=</mo><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>}</mo></math></span>, <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>−</mo></mrow></msup><mo>=</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mo>−</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>}</mo></math></span>, <span><math><mi>f</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>6</mn></mrow></msup><mo>(</mo><mi>R</mi><mo>)</mo></math></span> is 2<em>π</em> periodic with zero mean value with respect to <em>t</em>, <em>a</em> and <em>b</em> are two different positive constants satisfying <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mi>a</mi></mrow></msqrt></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><mi>b</mi></mrow></msqrt></mrow></mfrac><mo>)</mo></mrow><mo>∈</mo><mi>R</mi><mo>﹨</mo><mi>Q</mi></math></span>. We shall establish an explicit construction of the Birkhoff transformation and thus obtain the explicit formula for the third twist coefficient where the first two twist coefficients are both zero. As an application, we propose a sufficient condition for <em>f</em> such that for a given parameter <span><math><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span> and any given bounded closed interval <span><math><mi>I</mi><mo>⊂</mo><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn><msqrt><mrow><mi>a</mi></mrow></msqrt></mrow></mfrac><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></mrow></math></span>, there exists a finite set <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>⊂</mo><mi>I</mi></math></span> such that for any <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>I</mi><mo>﹨</mo><mo>(</mo><mi>Q</mi><mo>∪</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>I</mi></mrow></msub><mo>)</mo></math></span>, the solutions of the asymmetric oscillation are all bounded.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"425 \",\"pages\":\"Pages 434-469\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625000476\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625000476","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了非对称振荡x″+ax+−bx−=f(t)在椭圆不动点周围的Birkhoff范式,其中x+=max (x,0), x−=max (x,0), f(t)∈C6(R)是一个均值为零的2π周期,a和b是满足ω0:=12(1a+1b)∈R\Q的两个不同的正常数。我们将建立Birkhoff变换的显式构造,从而得到前两个扭转系数均为零的第三个扭转系数的显式公式。作为应用,我们提出f的一个充分条件,使得对于给定参数a>;0和任意给定有界闭区间I∧(12a,+∞),存在一个有限集合CI∧I,使得对于任意ω0∈I\(Q∪CI),非对称振荡的解都是有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Birkhoff normal form and twist coefficients of asymmetric oscillations
In this paper, we study the Birkhoff normal form around the elliptic fixed point for the asymmetric oscillationx+ax+bx=f(t), where x+=max{x,0}, x=max{x,0}, f(t)C6(R) is 2π periodic with zero mean value with respect to t, a and b are two different positive constants satisfying ω0:=12(1a+1b)RQ. We shall establish an explicit construction of the Birkhoff transformation and thus obtain the explicit formula for the third twist coefficient where the first two twist coefficients are both zero. As an application, we propose a sufficient condition for f such that for a given parameter a>0 and any given bounded closed interval I(12a,+), there exists a finite set CII such that for any ω0I(QCI), the solutions of the asymmetric oscillation are all bounded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信