高亲和肽生物材料

IF 12.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Myriel Kim, Rebecca Avrutin, Sean Chryz Iranzo, Honggang Cui
{"title":"高亲和肽生物材料","authors":"Myriel Kim,&nbsp;Rebecca Avrutin,&nbsp;Sean Chryz Iranzo,&nbsp;Honggang Cui","doi":"10.1016/j.cossms.2024.101212","DOIUrl":null,"url":null,"abstract":"<div><div>High-affinity binding is a crucial aspect in the design of advanced biomaterials, enabling the creation of materials that can specifically and effectively interact with target objects such as tissues, cells, or biomolecules, mimicking the sophisticated yet well-controlled interactions found in nature. Peptide-based high-affinity biomaterials have emerged as a promising class due to their versatility in chemical design, simplicity in synthesis and formulation, intrinsic ability to mediate biological communication, and key materials features such as tunable biodegradability and modulable biocompatibility. This Opinion article highlights the critical factors to consider in the development of high-affinity peptide materials, including the selection of appropriate peptide ligands, ensuring conformational stability, and optimizing ligand density and conjugation strategies. It also explores how these design considerations have been successfully employed in various applications, including regenerative medicine, drug delivery, and molecular purification.</div></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"34 ","pages":"Article 101212"},"PeriodicalIF":12.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-affinity peptide biomaterials\",\"authors\":\"Myriel Kim,&nbsp;Rebecca Avrutin,&nbsp;Sean Chryz Iranzo,&nbsp;Honggang Cui\",\"doi\":\"10.1016/j.cossms.2024.101212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-affinity binding is a crucial aspect in the design of advanced biomaterials, enabling the creation of materials that can specifically and effectively interact with target objects such as tissues, cells, or biomolecules, mimicking the sophisticated yet well-controlled interactions found in nature. Peptide-based high-affinity biomaterials have emerged as a promising class due to their versatility in chemical design, simplicity in synthesis and formulation, intrinsic ability to mediate biological communication, and key materials features such as tunable biodegradability and modulable biocompatibility. This Opinion article highlights the critical factors to consider in the development of high-affinity peptide materials, including the selection of appropriate peptide ligands, ensuring conformational stability, and optimizing ligand density and conjugation strategies. It also explores how these design considerations have been successfully employed in various applications, including regenerative medicine, drug delivery, and molecular purification.</div></div>\",\"PeriodicalId\":295,\"journal\":{\"name\":\"Current Opinion in Solid State & Materials Science\",\"volume\":\"34 \",\"pages\":\"Article 101212\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Solid State & Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359028624000780\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028624000780","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高亲和力结合是设计先进生物材料的一个重要方面,它使材料能够与目标物体(如组织、细胞或生物分子)特异性和有效地相互作用,模仿自然界中发现的复杂但控制良好的相互作用。基于多肽的高亲和力生物材料由于其化学设计的通用性、合成和配方的简单性、介导生物通讯的内在能力以及可调节的生物降解性和可调节的生物相容性等关键材料特性而成为一种有前途的生物材料。这篇观点文章强调了在开发高亲和力肽材料时需要考虑的关键因素,包括选择合适的肽配体,确保构象稳定性,优化配体密度和偶联策略。它还探讨了这些设计考虑如何成功地应用于各种应用,包括再生医学,药物输送和分子纯化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-affinity peptide biomaterials
High-affinity binding is a crucial aspect in the design of advanced biomaterials, enabling the creation of materials that can specifically and effectively interact with target objects such as tissues, cells, or biomolecules, mimicking the sophisticated yet well-controlled interactions found in nature. Peptide-based high-affinity biomaterials have emerged as a promising class due to their versatility in chemical design, simplicity in synthesis and formulation, intrinsic ability to mediate biological communication, and key materials features such as tunable biodegradability and modulable biocompatibility. This Opinion article highlights the critical factors to consider in the development of high-affinity peptide materials, including the selection of appropriate peptide ligands, ensuring conformational stability, and optimizing ligand density and conjugation strategies. It also explores how these design considerations have been successfully employed in various applications, including regenerative medicine, drug delivery, and molecular purification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Solid State & Materials Science
Current Opinion in Solid State & Materials Science 工程技术-材料科学:综合
CiteScore
21.10
自引率
3.60%
发文量
41
审稿时长
47 days
期刊介绍: Title: Current Opinion in Solid State & Materials Science Journal Overview: Aims to provide a snapshot of the latest research and advances in materials science Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research Promotes cross-fertilization of ideas across an increasingly interdisciplinary field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信