一类非线性实阶系统的新阶相关控制条件

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Bichitra Kumar Lenka, Ranjit Kumar Upadhyay
{"title":"一类非线性实阶系统的新阶相关控制条件","authors":"Bichitra Kumar Lenka,&nbsp;Ranjit Kumar Upadhyay","doi":"10.1016/j.ejcon.2024.101162","DOIUrl":null,"url":null,"abstract":"<div><div>In many application points of interest, controlling the responses of real-world applications that vary with time seems quite challenging and puzzling. A linear time-varying state feedback controller is widely known and can be useful to estimate bounds to the state control matrix in the design of many control systems. The issue of initialization of real-order control system enhancement remains a challenging issue in the systems analysis subject to random initial-time placed on a real number line. We address a new design of a class of real-order control systems that consists of separated linear and nonlinear terms affected by input functions to be controlled with an implemented time-varying linear state feedback controller. We utilize the fractional comparison method and under Lipschitz nonlinearity with a constant bounding matrix of time-varying coefficients of control systems to address new order-dependent conditions that provide local and global stabilization to controlled systems. Applications of results that include practical real-order single-machine-infinite-bus power systems have been illustrated to control the responses by the utility of theoretical conditions examined along with validation of numerical simulations. It is shown that the proposed controller is practically convenient and demonstrates the efficiency of measuring the performances of control systems.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"81 ","pages":"Article 101162"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New order-dependent conditions to control a class of nonlinear real-order systems\",\"authors\":\"Bichitra Kumar Lenka,&nbsp;Ranjit Kumar Upadhyay\",\"doi\":\"10.1016/j.ejcon.2024.101162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In many application points of interest, controlling the responses of real-world applications that vary with time seems quite challenging and puzzling. A linear time-varying state feedback controller is widely known and can be useful to estimate bounds to the state control matrix in the design of many control systems. The issue of initialization of real-order control system enhancement remains a challenging issue in the systems analysis subject to random initial-time placed on a real number line. We address a new design of a class of real-order control systems that consists of separated linear and nonlinear terms affected by input functions to be controlled with an implemented time-varying linear state feedback controller. We utilize the fractional comparison method and under Lipschitz nonlinearity with a constant bounding matrix of time-varying coefficients of control systems to address new order-dependent conditions that provide local and global stabilization to controlled systems. Applications of results that include practical real-order single-machine-infinite-bus power systems have been illustrated to control the responses by the utility of theoretical conditions examined along with validation of numerical simulations. It is shown that the proposed controller is practically convenient and demonstrates the efficiency of measuring the performances of control systems.</div></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"81 \",\"pages\":\"Article 101162\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S094735802400222X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S094735802400222X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在许多感兴趣的应用程序点中,控制随时间变化的实际应用程序的响应似乎相当具有挑战性和令人困惑。线性时变状态反馈控制器在许多控制系统的设计中被广泛用于估计状态控制矩阵的界。实数线上随机初始时间下的系统分析中,实阶控制系统增强的初始化问题一直是一个具有挑战性的问题。我们解决了一类实数控制系统的新设计,该系统由受输入函数影响的分离线性和非线性项组成,并由实现的时变线性状态反馈控制器进行控制。我们利用分数比较方法和控制系统时变系数的常数边界矩阵的Lipschitz非线性来解决新的阶相关条件,提供局部和全局稳定的控制系统。结果的应用,包括实际的实阶单机无限母线电力系统,已经说明了控制响应的理论条件的效用以及数值模拟的验证。实验结果表明,所提出的控制器具有实用性和方便性,能够有效地测量控制系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New order-dependent conditions to control a class of nonlinear real-order systems
In many application points of interest, controlling the responses of real-world applications that vary with time seems quite challenging and puzzling. A linear time-varying state feedback controller is widely known and can be useful to estimate bounds to the state control matrix in the design of many control systems. The issue of initialization of real-order control system enhancement remains a challenging issue in the systems analysis subject to random initial-time placed on a real number line. We address a new design of a class of real-order control systems that consists of separated linear and nonlinear terms affected by input functions to be controlled with an implemented time-varying linear state feedback controller. We utilize the fractional comparison method and under Lipschitz nonlinearity with a constant bounding matrix of time-varying coefficients of control systems to address new order-dependent conditions that provide local and global stabilization to controlled systems. Applications of results that include practical real-order single-machine-infinite-bus power systems have been illustrated to control the responses by the utility of theoretical conditions examined along with validation of numerical simulations. It is shown that the proposed controller is practically convenient and demonstrates the efficiency of measuring the performances of control systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Control
European Journal of Control 工程技术-自动化与控制系统
CiteScore
5.80
自引率
5.90%
发文量
131
审稿时长
1 months
期刊介绍: The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field. The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering. The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications. Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results. The design and implementation of a successful control system requires the use of a range of techniques: Modelling Robustness Analysis Identification Optimization Control Law Design Numerical analysis Fault Detection, and so on.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信