选择性激光烧结制备自监测MWCNT/PA12细胞复合材料的单调和循环压缩性能

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
Muhammad Umar Azam , S Kumar , Andreas Schiffer
{"title":"选择性激光烧结制备自监测MWCNT/PA12细胞复合材料的单调和循环压缩性能","authors":"Muhammad Umar Azam ,&nbsp;S Kumar ,&nbsp;Andreas Schiffer","doi":"10.1016/j.jcomc.2025.100566","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, we experimentally investigate the mechanical and piezoresistive properties of selectively laser-sintered cellular composites under monotonic and cyclic compressive loading. Hexagonal honeycomb structures (HHSs) with relative densities of 20 %, 30 %, and 40 % were 3D printed from a ball-milled nanocomposite powder of multi-walled carbon nanotubes (MWCNTs) and polyamide 12 (PA12) with 0.3 wt.% MWCNTs. The pure PA12 HHSs exhibited lower porosity and superior mechanical properties, including collapse strength, elastic modulus and energy absorption, particularly at higher relative densities (30 % and 40 %). Notably, the specific energy absorption for the PA12 HHSs reached 24 J g⁻¹, under out-of-plane compression at 40 % relative density. Compared to neat PA12, the MWCNT/PA12 HHSs showed a reduction in strength and modulus but demonstrated excellent energy absorption efficiency of up to 53 %. Moreover, MWCNT/PA12 HHSs exhibited exceptional strain-sensing capabilities in the elastic region with gauge factors of up to 25. Cyclic tests showed that the zero-load resistance increased significantly as damage progressed during the collapse phase, highlighting their potential for application in smart, lightweight structures with integrated strain and damage-sensing functionalities.</div></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"16 ","pages":"Article 100566"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotonic and cyclic compressive performance of self-monitoring MWCNT/PA12 cellular composites manufactured by selective laser sintering\",\"authors\":\"Muhammad Umar Azam ,&nbsp;S Kumar ,&nbsp;Andreas Schiffer\",\"doi\":\"10.1016/j.jcomc.2025.100566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Herein, we experimentally investigate the mechanical and piezoresistive properties of selectively laser-sintered cellular composites under monotonic and cyclic compressive loading. Hexagonal honeycomb structures (HHSs) with relative densities of 20 %, 30 %, and 40 % were 3D printed from a ball-milled nanocomposite powder of multi-walled carbon nanotubes (MWCNTs) and polyamide 12 (PA12) with 0.3 wt.% MWCNTs. The pure PA12 HHSs exhibited lower porosity and superior mechanical properties, including collapse strength, elastic modulus and energy absorption, particularly at higher relative densities (30 % and 40 %). Notably, the specific energy absorption for the PA12 HHSs reached 24 J g⁻¹, under out-of-plane compression at 40 % relative density. Compared to neat PA12, the MWCNT/PA12 HHSs showed a reduction in strength and modulus but demonstrated excellent energy absorption efficiency of up to 53 %. Moreover, MWCNT/PA12 HHSs exhibited exceptional strain-sensing capabilities in the elastic region with gauge factors of up to 25. Cyclic tests showed that the zero-load resistance increased significantly as damage progressed during the collapse phase, highlighting their potential for application in smart, lightweight structures with integrated strain and damage-sensing functionalities.</div></div>\",\"PeriodicalId\":34525,\"journal\":{\"name\":\"Composites Part C Open Access\",\"volume\":\"16 \",\"pages\":\"Article 100566\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part C Open Access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666682025000106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682025000106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们实验研究了选择性激光烧结蜂窝复合材料在单调和循环压缩载荷下的力学和压阻性能。以含0.3 wt.% MWCNTs的多壁碳纳米管(MWCNTs)和聚酰胺12 (PA12)的球磨纳米复合粉末为材料,3D打印出相对密度分别为20%、30%和40%的六边形蜂窝结构(hhs)。纯PA12 hhs具有较低的孔隙率和优异的力学性能,包括崩溃强度、弹性模量和能量吸收,特别是在较高的相对密度(30%和40%)下。值得注意的是,在相对密度为40%的面外压缩下,PA12 hhs的比能吸收达到24 J g⁻¹。与纯PA12相比,MWCNT/PA12 hhs的强度和模量有所降低,但能量吸收效率高达53%。此外,MWCNT/PA12 hhs在弹性区域表现出特殊的应变传感能力,其测量因子高达25。循环试验表明,在坍塌阶段,随着损伤的进展,零载阻力显著增加,这突显了它们在具有应变和损伤传感功能的智能轻量化结构中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Monotonic and cyclic compressive performance of self-monitoring MWCNT/PA12 cellular composites manufactured by selective laser sintering

Monotonic and cyclic compressive performance of self-monitoring MWCNT/PA12 cellular composites manufactured by selective laser sintering
Herein, we experimentally investigate the mechanical and piezoresistive properties of selectively laser-sintered cellular composites under monotonic and cyclic compressive loading. Hexagonal honeycomb structures (HHSs) with relative densities of 20 %, 30 %, and 40 % were 3D printed from a ball-milled nanocomposite powder of multi-walled carbon nanotubes (MWCNTs) and polyamide 12 (PA12) with 0.3 wt.% MWCNTs. The pure PA12 HHSs exhibited lower porosity and superior mechanical properties, including collapse strength, elastic modulus and energy absorption, particularly at higher relative densities (30 % and 40 %). Notably, the specific energy absorption for the PA12 HHSs reached 24 J g⁻¹, under out-of-plane compression at 40 % relative density. Compared to neat PA12, the MWCNT/PA12 HHSs showed a reduction in strength and modulus but demonstrated excellent energy absorption efficiency of up to 53 %. Moreover, MWCNT/PA12 HHSs exhibited exceptional strain-sensing capabilities in the elastic region with gauge factors of up to 25. Cyclic tests showed that the zero-load resistance increased significantly as damage progressed during the collapse phase, highlighting their potential for application in smart, lightweight structures with integrated strain and damage-sensing functionalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信