Saisai Hu , Ping Su , Deyin Tao , Luhui Zhu , Aiping Chen , Dawei Gu , Mustafa Eginligil
{"title":"基于软粗糙复合材料的可回收摩擦电纳米发电机的卓越能源效率","authors":"Saisai Hu , Ping Su , Deyin Tao , Luhui Zhu , Aiping Chen , Dawei Gu , Mustafa Eginligil","doi":"10.1016/j.nwnano.2025.100080","DOIUrl":null,"url":null,"abstract":"<div><div>Energy efficiency vs. degradability of materials making up triboelectric nanogenerators (TENGs) is critical for recyclable energy sources. In this work, we first compared voltage output expectation (V<sub>exp</sub>) of contact-separation TENG consisting of two tribo-layers: paper and common plastics used in packaging (both non-biodegradable and biodegradable). Detailed analysis based on atomic force microscopy and capacitance measurements demonstrated surface roughness of soft-rough biodegradable polymers (SRBPs) is expected to yield larger V<sub>exp</sub>, predictably. A SRBP composite-based TENG was expected to show ∼7.2 times larger V<sub>exp</sub> than a hard-flat nonbiodegradable plastic, demonstrating promising charge transfer efficiency; while the measured voltage (V<sub>mea</sub>) was only 6.5% of V<sub>exp</sub>. This was unlike the other plastics, including a non-composite SRBP, (V<sub>mea</sub>/V<sub>exp</sub> ∼0.36) and the low V<sub>mea</sub>/V<sub>exp</sub> in the SRBP composite-based TENG was attributed to intrinsic material properties. Also, energy conversion efficiency in TENG-based on SRBPs was more than double of hard-flat plastics. This shows the potential of the composite SRBP-based TENG as effective energy harvester.</div></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"9 ","pages":"Article 100080"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards outstanding energy-efficiency in a recyclable triboelectric nanogenerator based on a soft-rough composite material\",\"authors\":\"Saisai Hu , Ping Su , Deyin Tao , Luhui Zhu , Aiping Chen , Dawei Gu , Mustafa Eginligil\",\"doi\":\"10.1016/j.nwnano.2025.100080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Energy efficiency vs. degradability of materials making up triboelectric nanogenerators (TENGs) is critical for recyclable energy sources. In this work, we first compared voltage output expectation (V<sub>exp</sub>) of contact-separation TENG consisting of two tribo-layers: paper and common plastics used in packaging (both non-biodegradable and biodegradable). Detailed analysis based on atomic force microscopy and capacitance measurements demonstrated surface roughness of soft-rough biodegradable polymers (SRBPs) is expected to yield larger V<sub>exp</sub>, predictably. A SRBP composite-based TENG was expected to show ∼7.2 times larger V<sub>exp</sub> than a hard-flat nonbiodegradable plastic, demonstrating promising charge transfer efficiency; while the measured voltage (V<sub>mea</sub>) was only 6.5% of V<sub>exp</sub>. This was unlike the other plastics, including a non-composite SRBP, (V<sub>mea</sub>/V<sub>exp</sub> ∼0.36) and the low V<sub>mea</sub>/V<sub>exp</sub> in the SRBP composite-based TENG was attributed to intrinsic material properties. Also, energy conversion efficiency in TENG-based on SRBPs was more than double of hard-flat plastics. This shows the potential of the composite SRBP-based TENG as effective energy harvester.</div></div>\",\"PeriodicalId\":100942,\"journal\":{\"name\":\"Nano Trends\",\"volume\":\"9 \",\"pages\":\"Article 100080\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666978125000091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978125000091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards outstanding energy-efficiency in a recyclable triboelectric nanogenerator based on a soft-rough composite material
Energy efficiency vs. degradability of materials making up triboelectric nanogenerators (TENGs) is critical for recyclable energy sources. In this work, we first compared voltage output expectation (Vexp) of contact-separation TENG consisting of two tribo-layers: paper and common plastics used in packaging (both non-biodegradable and biodegradable). Detailed analysis based on atomic force microscopy and capacitance measurements demonstrated surface roughness of soft-rough biodegradable polymers (SRBPs) is expected to yield larger Vexp, predictably. A SRBP composite-based TENG was expected to show ∼7.2 times larger Vexp than a hard-flat nonbiodegradable plastic, demonstrating promising charge transfer efficiency; while the measured voltage (Vmea) was only 6.5% of Vexp. This was unlike the other plastics, including a non-composite SRBP, (Vmea/Vexp ∼0.36) and the low Vmea/Vexp in the SRBP composite-based TENG was attributed to intrinsic material properties. Also, energy conversion efficiency in TENG-based on SRBPs was more than double of hard-flat plastics. This shows the potential of the composite SRBP-based TENG as effective energy harvester.