{"title":"btg13相关金属酶:非典型非血红素铁依赖双加氧酶,具有不寻常的配位模式和催化机制","authors":"Zhiwei Deng, Zhenbo Yuan, Zhengshan Luo, Yijian Rao","doi":"10.1016/j.engmic.2024.100188","DOIUrl":null,"url":null,"abstract":"<div><div>Owing to their diverse coordination patterns and catalytic mechanisms, non-heme iron-dependent dioxygenases catalyze a variety of biochemical reactions involved in the synthesis of numerous natural products and valuable compounds. Recently, we discovered a novel and atypical non-heme iron-dependent dioxygenase, BTG13, that features a unique coordination center consisting of four histidines and a carboxylated lysine (Kcx). This enzyme catalyzes the C–C bond cleavage of anthraquinone through two unconventional steps, with modified Kcx playing a key role in facilitating these processes, as revealed by molecular dynamics simulations and quantum chemical calculations. Phylogenetic analyses and other studies suggest that BTG13-related metalloenzymes are widespread in various organisms. Here, we highlight the significance of this new class of non-heme iron-dependent oxygenases and their potential as novel tools for practical applications in synthetic biology.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 1","pages":"Article 100188"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BTG13-related metalloenzymes: Atypical non-heme iron-dependent dioxygenases with unusual coordination patterns and catalytic mechanisms\",\"authors\":\"Zhiwei Deng, Zhenbo Yuan, Zhengshan Luo, Yijian Rao\",\"doi\":\"10.1016/j.engmic.2024.100188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Owing to their diverse coordination patterns and catalytic mechanisms, non-heme iron-dependent dioxygenases catalyze a variety of biochemical reactions involved in the synthesis of numerous natural products and valuable compounds. Recently, we discovered a novel and atypical non-heme iron-dependent dioxygenase, BTG13, that features a unique coordination center consisting of four histidines and a carboxylated lysine (Kcx). This enzyme catalyzes the C–C bond cleavage of anthraquinone through two unconventional steps, with modified Kcx playing a key role in facilitating these processes, as revealed by molecular dynamics simulations and quantum chemical calculations. Phylogenetic analyses and other studies suggest that BTG13-related metalloenzymes are widespread in various organisms. Here, we highlight the significance of this new class of non-heme iron-dependent oxygenases and their potential as novel tools for practical applications in synthetic biology.</div></div>\",\"PeriodicalId\":100478,\"journal\":{\"name\":\"Engineering Microbiology\",\"volume\":\"5 1\",\"pages\":\"Article 100188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266737032400050X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266737032400050X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BTG13-related metalloenzymes: Atypical non-heme iron-dependent dioxygenases with unusual coordination patterns and catalytic mechanisms
Owing to their diverse coordination patterns and catalytic mechanisms, non-heme iron-dependent dioxygenases catalyze a variety of biochemical reactions involved in the synthesis of numerous natural products and valuable compounds. Recently, we discovered a novel and atypical non-heme iron-dependent dioxygenase, BTG13, that features a unique coordination center consisting of four histidines and a carboxylated lysine (Kcx). This enzyme catalyzes the C–C bond cleavage of anthraquinone through two unconventional steps, with modified Kcx playing a key role in facilitating these processes, as revealed by molecular dynamics simulations and quantum chemical calculations. Phylogenetic analyses and other studies suggest that BTG13-related metalloenzymes are widespread in various organisms. Here, we highlight the significance of this new class of non-heme iron-dependent oxygenases and their potential as novel tools for practical applications in synthetic biology.