{"title":"确定大多数奇特征偶数次超曲面的R/(xpe, type,zpe)的Betti数","authors":"Heath Camphire","doi":"10.1016/j.jpaa.2024.107858","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>k</em> be a field of odd characteristic <em>p</em>. Fix an even number <span><math><mi>d</mi><mo><</mo><mi>p</mi><mo>+</mo><mn>1</mn></math></span> and a power <span><math><mi>q</mi><mo>≥</mo><mi>d</mi><mo>+</mo><mn>3</mn></math></span> of <em>p</em>. For most choices of degree <em>d</em> standard graded hypersurfaces <span><math><mi>R</mi><mo>=</mo><mi>k</mi><mo>[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>]</mo><mo>/</mo><mo>(</mo><mi>f</mi><mo>)</mo></math></span> with homogeneous maximal ideal <span><math><mi>m</mi></math></span>, we can determine the graded Betti numbers of <span><math><mi>R</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mo>[</mo><mi>q</mi><mo>]</mo></mrow></msup></math></span>. In fact, given two fixed powers <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mi>d</mi><mo>+</mo><mn>3</mn></math></span>, for most choices of <em>R</em> the graded Betti numbers in high homological degree of <span><math><mi>R</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mo>[</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>]</mo></mrow></msup></math></span> and <span><math><mi>R</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mo>[</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo></mrow></msup></math></span> are the same up to a constant shift. This paper shows this fact by combining our results with the work of Miller, Rahmati, and R.G. on link-<em>q</em>-compressed polynomials in <span><span>[13]</span></span>. We show that link-<em>q</em>-compressed polynomials are indeed fairly common in many polynomial rings.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 1","pages":"Article 107858"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining the Betti numbers of R/(xpe,ype,zpe) for most even degree hypersurfaces in odd characteristic\",\"authors\":\"Heath Camphire\",\"doi\":\"10.1016/j.jpaa.2024.107858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>k</em> be a field of odd characteristic <em>p</em>. Fix an even number <span><math><mi>d</mi><mo><</mo><mi>p</mi><mo>+</mo><mn>1</mn></math></span> and a power <span><math><mi>q</mi><mo>≥</mo><mi>d</mi><mo>+</mo><mn>3</mn></math></span> of <em>p</em>. For most choices of degree <em>d</em> standard graded hypersurfaces <span><math><mi>R</mi><mo>=</mo><mi>k</mi><mo>[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>]</mo><mo>/</mo><mo>(</mo><mi>f</mi><mo>)</mo></math></span> with homogeneous maximal ideal <span><math><mi>m</mi></math></span>, we can determine the graded Betti numbers of <span><math><mi>R</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mo>[</mo><mi>q</mi><mo>]</mo></mrow></msup></math></span>. In fact, given two fixed powers <span><math><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mi>d</mi><mo>+</mo><mn>3</mn></math></span>, for most choices of <em>R</em> the graded Betti numbers in high homological degree of <span><math><mi>R</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mo>[</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>]</mo></mrow></msup></math></span> and <span><math><mi>R</mi><mo>/</mo><msup><mrow><mi>m</mi></mrow><mrow><mo>[</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>]</mo></mrow></msup></math></span> are the same up to a constant shift. This paper shows this fact by combining our results with the work of Miller, Rahmati, and R.G. on link-<em>q</em>-compressed polynomials in <span><span>[13]</span></span>. We show that link-<em>q</em>-compressed polynomials are indeed fairly common in many polynomial rings.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 1\",\"pages\":\"Article 107858\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002240492400255X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240492400255X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Determining the Betti numbers of R/(xpe,ype,zpe) for most even degree hypersurfaces in odd characteristic
Let k be a field of odd characteristic p. Fix an even number and a power of p. For most choices of degree d standard graded hypersurfaces with homogeneous maximal ideal , we can determine the graded Betti numbers of . In fact, given two fixed powers , for most choices of R the graded Betti numbers in high homological degree of and are the same up to a constant shift. This paper shows this fact by combining our results with the work of Miller, Rahmati, and R.G. on link-q-compressed polynomials in [13]. We show that link-q-compressed polynomials are indeed fairly common in many polynomial rings.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.