推进基于纳米材料的丝网印刷电极的即时检测

Sophia Nazir
{"title":"推进基于纳米材料的丝网印刷电极的即时检测","authors":"Sophia Nazir","doi":"10.1016/j.sintl.2025.100328","DOIUrl":null,"url":null,"abstract":"<div><div>Although numerous studies have been conducted on multiple screen-printing electrodes (SPEs), little emphasis has been placed on systematically assessing scholarly work on nanomaterial-equipped SPEs in bioanalytical research. The fabrication of state-of-the-art portable screen-printing measuring devices represents significant disease monitoring and diagnosis advancements. This review classifies screen-printing electrodes based on the nanomaterials used. It discusses cost, regulatory approvals for portable screen-printing electrodes in point-of-care diagnostics, sensitivity, specificity, size reductions, and proposed solutions. It looks into the significance of new nanomaterials and substrates in fabricating point-of-care diagnostic devices and miniaturisation techniques. The review primarily focuses on the recent downsizing advances that have resulted in a growing number of portable screen-printing electrodes for quick point-of-care diagnostics. Special attention is given to identifying different bioanalytics associated with distinct medical problems. Screen-printing biosensors potentially transform healthcare by allowing for rapid, accurate, and individualised diagnosis. These biosensors improve disease management, medical outcomes, and global diagnostic accessibility as technology advances.</div></div>","PeriodicalId":21733,"journal":{"name":"Sensors International","volume":"6 ","pages":"Article 100328"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing point-of-care testing with nanomaterials-based screen-printing electrodes\",\"authors\":\"Sophia Nazir\",\"doi\":\"10.1016/j.sintl.2025.100328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although numerous studies have been conducted on multiple screen-printing electrodes (SPEs), little emphasis has been placed on systematically assessing scholarly work on nanomaterial-equipped SPEs in bioanalytical research. The fabrication of state-of-the-art portable screen-printing measuring devices represents significant disease monitoring and diagnosis advancements. This review classifies screen-printing electrodes based on the nanomaterials used. It discusses cost, regulatory approvals for portable screen-printing electrodes in point-of-care diagnostics, sensitivity, specificity, size reductions, and proposed solutions. It looks into the significance of new nanomaterials and substrates in fabricating point-of-care diagnostic devices and miniaturisation techniques. The review primarily focuses on the recent downsizing advances that have resulted in a growing number of portable screen-printing electrodes for quick point-of-care diagnostics. Special attention is given to identifying different bioanalytics associated with distinct medical problems. Screen-printing biosensors potentially transform healthcare by allowing for rapid, accurate, and individualised diagnosis. These biosensors improve disease management, medical outcomes, and global diagnostic accessibility as technology advances.</div></div>\",\"PeriodicalId\":21733,\"journal\":{\"name\":\"Sensors International\",\"volume\":\"6 \",\"pages\":\"Article 100328\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666351125000038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors International","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666351125000038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管已经对多种丝网印刷电极(spe)进行了大量研究,但很少强调系统地评估生物分析研究中配备纳米材料的spe的学术工作。最先进的便携式丝网印刷测量设备的制造代表了重大的疾病监测和诊断进步。本文根据所使用的纳米材料对丝网印刷电极进行分类。它讨论了便携式丝网印刷电极在即时诊断中的成本、监管批准、灵敏度、特异性、尺寸减小以及提出的解决方案。它着眼于新的纳米材料和衬底在制造即时诊断设备和小型化技术中的意义。该综述主要侧重于最近小型化的进展,这些进展导致越来越多的便携式丝网印刷电极用于快速即时诊断。特别注意识别与不同医学问题相关的不同生物分析。通过允许快速、准确和个性化的诊断,丝网印刷生物传感器可能会改变医疗保健。随着技术的进步,这些生物传感器改善了疾病管理、医疗结果和全球诊断的可及性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing point-of-care testing with nanomaterials-based screen-printing electrodes
Although numerous studies have been conducted on multiple screen-printing electrodes (SPEs), little emphasis has been placed on systematically assessing scholarly work on nanomaterial-equipped SPEs in bioanalytical research. The fabrication of state-of-the-art portable screen-printing measuring devices represents significant disease monitoring and diagnosis advancements. This review classifies screen-printing electrodes based on the nanomaterials used. It discusses cost, regulatory approvals for portable screen-printing electrodes in point-of-care diagnostics, sensitivity, specificity, size reductions, and proposed solutions. It looks into the significance of new nanomaterials and substrates in fabricating point-of-care diagnostic devices and miniaturisation techniques. The review primarily focuses on the recent downsizing advances that have resulted in a growing number of portable screen-printing electrodes for quick point-of-care diagnostics. Special attention is given to identifying different bioanalytics associated with distinct medical problems. Screen-printing biosensors potentially transform healthcare by allowing for rapid, accurate, and individualised diagnosis. These biosensors improve disease management, medical outcomes, and global diagnostic accessibility as technology advances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信