电弧直接能量沉积HEAs颗粒增强AlMgSc合金的冶金界面及晶粒细化效果研究

IF 4.2 Q2 ENGINEERING, MANUFACTURING
Shihao Shi, Yingying Ren, Shihao Kang, Yongqin Liu, Chenyu Liu, Yaning He, Yinghui Zhou
{"title":"电弧直接能量沉积HEAs颗粒增强AlMgSc合金的冶金界面及晶粒细化效果研究","authors":"Shihao Shi,&nbsp;Yingying Ren,&nbsp;Shihao Kang,&nbsp;Yongqin Liu,&nbsp;Chenyu Liu,&nbsp;Yaning He,&nbsp;Yinghui Zhou","doi":"10.1016/j.addlet.2025.100271","DOIUrl":null,"url":null,"abstract":"<div><div>On the basis of the AlMgSc alloy formed by Arc-DED (Arc Directed Energy Deposition), we adopted a method of coaxially depositing powder and wire layer by layer to fabricate the AlMgSc alloy enhanced by (HEAs) High Entropy Alloys. The HEAs powder exhibited favorable metallurgical bonding with the α-Al matrix, and the elements such as Co, Fe, and Ni in the HEAs particles obviously diffused towards the matrix at the interface. The addition of HEAs powder significantly refined the microstructure. The average grain size of the AlMgSc alloy was 40.7 ± 13.9 μm, while that of the AlMgSc-HEAs alloy was 14.5 ± 4.9 μm, with a 64 % reduction in grain size. Compared with the AlMgSc alloy, the yield strength (YS) of the AlMgSc-HEAs alloy was increased by 9 %.</div></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":"13 ","pages":"Article 100271"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on metallurgical interface and grain refinement effect in AlMgSc alloy reinforced with HEAs particles formed by arc-direct energy deposition\",\"authors\":\"Shihao Shi,&nbsp;Yingying Ren,&nbsp;Shihao Kang,&nbsp;Yongqin Liu,&nbsp;Chenyu Liu,&nbsp;Yaning He,&nbsp;Yinghui Zhou\",\"doi\":\"10.1016/j.addlet.2025.100271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>On the basis of the AlMgSc alloy formed by Arc-DED (Arc Directed Energy Deposition), we adopted a method of coaxially depositing powder and wire layer by layer to fabricate the AlMgSc alloy enhanced by (HEAs) High Entropy Alloys. The HEAs powder exhibited favorable metallurgical bonding with the α-Al matrix, and the elements such as Co, Fe, and Ni in the HEAs particles obviously diffused towards the matrix at the interface. The addition of HEAs powder significantly refined the microstructure. The average grain size of the AlMgSc alloy was 40.7 ± 13.9 μm, while that of the AlMgSc-HEAs alloy was 14.5 ± 4.9 μm, with a 64 % reduction in grain size. Compared with the AlMgSc alloy, the yield strength (YS) of the AlMgSc-HEAs alloy was increased by 9 %.</div></div>\",\"PeriodicalId\":72068,\"journal\":{\"name\":\"Additive manufacturing letters\",\"volume\":\"13 \",\"pages\":\"Article 100271\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772369025000052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369025000052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

在电弧定向能沉积法(Arc - ded)制备AlMgSc合金的基础上,采用一层一层同轴沉积粉末和线材的方法制备了HEAs高熵合金增强AlMgSc合金。HEAs粉末与α-Al基体表现出良好的冶金结合,颗粒中的Co、Fe、Ni等元素在界面处明显向基体扩散。HEAs粉末的加入显著改善了显微组织。AlMgSc合金的平均晶粒尺寸为40.7±13.9 μm, AlMgSc- heas合金的平均晶粒尺寸为14.5±4.9 μm,晶粒尺寸减小了64%。与AlMgSc合金相比,AlMgSc- heas合金的屈服强度提高了9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on metallurgical interface and grain refinement effect in AlMgSc alloy reinforced with HEAs particles formed by arc-direct energy deposition
On the basis of the AlMgSc alloy formed by Arc-DED (Arc Directed Energy Deposition), we adopted a method of coaxially depositing powder and wire layer by layer to fabricate the AlMgSc alloy enhanced by (HEAs) High Entropy Alloys. The HEAs powder exhibited favorable metallurgical bonding with the α-Al matrix, and the elements such as Co, Fe, and Ni in the HEAs particles obviously diffused towards the matrix at the interface. The addition of HEAs powder significantly refined the microstructure. The average grain size of the AlMgSc alloy was 40.7 ± 13.9 μm, while that of the AlMgSc-HEAs alloy was 14.5 ± 4.9 μm, with a 64 % reduction in grain size. Compared with the AlMgSc alloy, the yield strength (YS) of the AlMgSc-HEAs alloy was increased by 9 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信