线性和非线性奇摄动初始值问题耦合系统有效数值格式的先验和后验误差估计

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Carmelo Clavero , Shashikant Kumar , Sunil Kumar
{"title":"线性和非线性奇摄动初始值问题耦合系统有效数值格式的先验和后验误差估计","authors":"Carmelo Clavero ,&nbsp;Shashikant Kumar ,&nbsp;Sunil Kumar","doi":"10.1016/j.apnum.2024.10.005","DOIUrl":null,"url":null,"abstract":"<div><div>This work considers the numerical approximation of linear and nonlinear singularly perturbed initial value coupled systems of first-order, for which the diffusion parameters at each equation of the system are distinct and also they can have a different order of magnitude. To do that, we use two efficient discretization methods, which combine the backward differences and an appropriate splitting by components. Both a priori and a posteriori error estimates are proved for the proposed discretization methods. The developed numerical methods are more computationally efficient than those classical methods used to solve the same type of coupled systems. Extensive numerical experiments strongly confirm in practice the theoretical results and corroborate the superior performance of the current approach compared with previous existing approaches.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 123-147"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A priori and a posteriori error estimates for efficient numerical schemes for coupled systems of linear and nonlinear singularly perturbed initial-value problems\",\"authors\":\"Carmelo Clavero ,&nbsp;Shashikant Kumar ,&nbsp;Sunil Kumar\",\"doi\":\"10.1016/j.apnum.2024.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work considers the numerical approximation of linear and nonlinear singularly perturbed initial value coupled systems of first-order, for which the diffusion parameters at each equation of the system are distinct and also they can have a different order of magnitude. To do that, we use two efficient discretization methods, which combine the backward differences and an appropriate splitting by components. Both a priori and a posteriori error estimates are proved for the proposed discretization methods. The developed numerical methods are more computationally efficient than those classical methods used to solve the same type of coupled systems. Extensive numerical experiments strongly confirm in practice the theoretical results and corroborate the superior performance of the current approach compared with previous existing approaches.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"208 \",\"pages\":\"Pages 123-147\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002721\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002721","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究一阶线性和非线性奇摄动初值耦合系统的数值逼近问题,该系统各方程处的扩散参数是不同的,而且它们可以有不同的数量级。为了做到这一点,我们使用了两种有效的离散化方法,它们结合了向后差分和适当的分量分割。证明了所提出的离散化方法的先验和后验误差估计。所开发的数值方法比传统的求解同类型耦合系统的方法计算效率更高。大量的数值实验在实践中有力地证实了理论结果,并证实了本方法相对于以往已有方法的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A priori and a posteriori error estimates for efficient numerical schemes for coupled systems of linear and nonlinear singularly perturbed initial-value problems
This work considers the numerical approximation of linear and nonlinear singularly perturbed initial value coupled systems of first-order, for which the diffusion parameters at each equation of the system are distinct and also they can have a different order of magnitude. To do that, we use two efficient discretization methods, which combine the backward differences and an appropriate splitting by components. Both a priori and a posteriori error estimates are proved for the proposed discretization methods. The developed numerical methods are more computationally efficient than those classical methods used to solve the same type of coupled systems. Extensive numerical experiments strongly confirm in practice the theoretical results and corroborate the superior performance of the current approach compared with previous existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信