M. Sall , G. Sow , A. Baillard , A. Dujarrier , L. Goodwin , J.G. Mattei , M. Sequeira , M. Peres , P. Loiko , Y. Doublet , M.P. Chauvat , C.A.P. da Costa , P. Boduch , H. Rothard , A. Braud , B. Damilano , K. Lorenz , C. Grygiel , E. Balanzat , I. Monnet
{"title":"快速重离子辐照使InGaN/GaN多量子阱走上了高效绿光发射的轨道","authors":"M. Sall , G. Sow , A. Baillard , A. Dujarrier , L. Goodwin , J.G. Mattei , M. Sequeira , M. Peres , P. Loiko , Y. Doublet , M.P. Chauvat , C.A.P. da Costa , P. Boduch , H. Rothard , A. Braud , B. Damilano , K. Lorenz , C. Grygiel , E. Balanzat , I. Monnet","doi":"10.1016/j.nwnano.2025.100078","DOIUrl":null,"url":null,"abstract":"<div><div>InN and InGaN/GaN multi-quantum wells (MQWs) were subjected to Swift Heavy Ion (SHI) irradiation. Ion track formation was studied using transmission electron microscopy in both plane view and cross-sectional modes. InN shows a remarkable sensitivity towards track formation with a material decomposition experimentally evidenced by means of Electron Energy Loss Spectroscopy. The MQWs material shows higher stability with negligible GaN/InGaN interface intermixing along the SHI tracks. This intermixing, proposed for mitigating polarization effects in InGaN/GaN-based light emitting diodes (LED), was achieved by track-free SHI irradiation. This was combined with low temperature thermal treatment at 450 °C with the aim to both create a compositional gradient at the MQWs interfaces and preserving the material luminescence. The obtained results pave the way for the use of SHI irradiation for efficient green light emission of InGaN/GaN-based LED.</div></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"9 ","pages":"Article 100078"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Swift heavy ion irradiation puts InGaN/GaN multi-quantum wells on the track for efficient green light emission\",\"authors\":\"M. Sall , G. Sow , A. Baillard , A. Dujarrier , L. Goodwin , J.G. Mattei , M. Sequeira , M. Peres , P. Loiko , Y. Doublet , M.P. Chauvat , C.A.P. da Costa , P. Boduch , H. Rothard , A. Braud , B. Damilano , K. Lorenz , C. Grygiel , E. Balanzat , I. Monnet\",\"doi\":\"10.1016/j.nwnano.2025.100078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>InN and InGaN/GaN multi-quantum wells (MQWs) were subjected to Swift Heavy Ion (SHI) irradiation. Ion track formation was studied using transmission electron microscopy in both plane view and cross-sectional modes. InN shows a remarkable sensitivity towards track formation with a material decomposition experimentally evidenced by means of Electron Energy Loss Spectroscopy. The MQWs material shows higher stability with negligible GaN/InGaN interface intermixing along the SHI tracks. This intermixing, proposed for mitigating polarization effects in InGaN/GaN-based light emitting diodes (LED), was achieved by track-free SHI irradiation. This was combined with low temperature thermal treatment at 450 °C with the aim to both create a compositional gradient at the MQWs interfaces and preserving the material luminescence. The obtained results pave the way for the use of SHI irradiation for efficient green light emission of InGaN/GaN-based LED.</div></div>\",\"PeriodicalId\":100942,\"journal\":{\"name\":\"Nano Trends\",\"volume\":\"9 \",\"pages\":\"Article 100078\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666978125000078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978125000078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
研究了快速重离子(Swift Heavy Ion, SHI)辐照下的InN和InGaN/GaN多量子阱。利用透射电子显微镜在平面和横截面两种模式下研究了离子轨迹的形成。通过电子能量损失谱的实验证明,InN对物质分解过程中径迹的形成具有显著的敏感性。MQWs材料表现出更高的稳定性,GaN/InGaN界面沿SHI轨迹的混合可以忽略不计。这种混合被提出用于减轻InGaN/ gan基发光二极管(LED)的偏振效应,是通过无轨迹的SHI照射实现的。这与450°C的低温热处理相结合,目的是在mqw界面上产生成分梯度并保持材料发光。所得结果为利用SHI辐照实现InGaN/ gan基LED的高效绿光发射铺平了道路。
Swift heavy ion irradiation puts InGaN/GaN multi-quantum wells on the track for efficient green light emission
InN and InGaN/GaN multi-quantum wells (MQWs) were subjected to Swift Heavy Ion (SHI) irradiation. Ion track formation was studied using transmission electron microscopy in both plane view and cross-sectional modes. InN shows a remarkable sensitivity towards track formation with a material decomposition experimentally evidenced by means of Electron Energy Loss Spectroscopy. The MQWs material shows higher stability with negligible GaN/InGaN interface intermixing along the SHI tracks. This intermixing, proposed for mitigating polarization effects in InGaN/GaN-based light emitting diodes (LED), was achieved by track-free SHI irradiation. This was combined with low temperature thermal treatment at 450 °C with the aim to both create a compositional gradient at the MQWs interfaces and preserving the material luminescence. The obtained results pave the way for the use of SHI irradiation for efficient green light emission of InGaN/GaN-based LED.