{"title":"Er3+/BiFeO3纳米催化剂的电场驱动应变和多铁性","authors":"Monika , Praveen Kumar , Varun Sangwan , Amarjeet , Mahendra , Abhishek Saxena , Shakshi Chauhan","doi":"10.1016/j.nwnano.2024.100068","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we examined the structural, impedance, electro-strain, magnetic properties of Er<sup>3+</sup>/BiFeO<sub>3</sub> nanocatlyst prepared via solid state route. The XRD (X-ray Diffraction) pattern reveals that the BFO has a distorted rhombohedral structure (space group R3c) with average domain size was altered from 38.4 nm to 23.7 nm as Er doping increases on the A-site. The morphological and elemental mapping studies were studied by using FeSEM and EDS. The complex impedance and dielectric investigations were conducted at various temperatures in the frequency range 2 MHz to 10 Hz. The dielectric constant (ε') has been observed to significantly decreases as the frequency increases and to rise as temperature increases. A significant peak-to-peak strain (S<sup>P</sup> and S<sup>N</sup>) and γ<sub>s</sub> (factor of asymmetry) were recorded in the ranges of 0.89–3.32 %, 0.758–3.124 %, and 15.4–34.3 %, correspondingly, with the highest strain memory value (Sm<sub>e</sub>%) 0.362. The doping of Er<sup>3+</sup> ions resulted in an extensive augment in saturation polarization (P<sub>s</sub>) from 0.781 to 1.884 μC/cm<sup>2</sup> and saturation magnetization (M<sub>s</sub>) from 0.764 to 3.27 emu/gm, as examined via the P-E hysteresis and M-H hysteresis loops, respectively. Band gap engineering and improved surface reactivity with Er doping led to an improvement in photo-catalytic degradation efficiencies from 64.8 % to 81.4 %.</div></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"9 ","pages":"Article 100068"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electric field driven strain and multiferroic properties of Er3+/BiFeO3 nano-catalyst\",\"authors\":\"Monika , Praveen Kumar , Varun Sangwan , Amarjeet , Mahendra , Abhishek Saxena , Shakshi Chauhan\",\"doi\":\"10.1016/j.nwnano.2024.100068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we examined the structural, impedance, electro-strain, magnetic properties of Er<sup>3+</sup>/BiFeO<sub>3</sub> nanocatlyst prepared via solid state route. The XRD (X-ray Diffraction) pattern reveals that the BFO has a distorted rhombohedral structure (space group R3c) with average domain size was altered from 38.4 nm to 23.7 nm as Er doping increases on the A-site. The morphological and elemental mapping studies were studied by using FeSEM and EDS. The complex impedance and dielectric investigations were conducted at various temperatures in the frequency range 2 MHz to 10 Hz. The dielectric constant (ε') has been observed to significantly decreases as the frequency increases and to rise as temperature increases. A significant peak-to-peak strain (S<sup>P</sup> and S<sup>N</sup>) and γ<sub>s</sub> (factor of asymmetry) were recorded in the ranges of 0.89–3.32 %, 0.758–3.124 %, and 15.4–34.3 %, correspondingly, with the highest strain memory value (Sm<sub>e</sub>%) 0.362. The doping of Er<sup>3+</sup> ions resulted in an extensive augment in saturation polarization (P<sub>s</sub>) from 0.781 to 1.884 μC/cm<sup>2</sup> and saturation magnetization (M<sub>s</sub>) from 0.764 to 3.27 emu/gm, as examined via the P-E hysteresis and M-H hysteresis loops, respectively. Band gap engineering and improved surface reactivity with Er doping led to an improvement in photo-catalytic degradation efficiencies from 64.8 % to 81.4 %.</div></div>\",\"PeriodicalId\":100942,\"journal\":{\"name\":\"Nano Trends\",\"volume\":\"9 \",\"pages\":\"Article 100068\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666978124000382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978124000382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electric field driven strain and multiferroic properties of Er3+/BiFeO3 nano-catalyst
In this work, we examined the structural, impedance, electro-strain, magnetic properties of Er3+/BiFeO3 nanocatlyst prepared via solid state route. The XRD (X-ray Diffraction) pattern reveals that the BFO has a distorted rhombohedral structure (space group R3c) with average domain size was altered from 38.4 nm to 23.7 nm as Er doping increases on the A-site. The morphological and elemental mapping studies were studied by using FeSEM and EDS. The complex impedance and dielectric investigations were conducted at various temperatures in the frequency range 2 MHz to 10 Hz. The dielectric constant (ε') has been observed to significantly decreases as the frequency increases and to rise as temperature increases. A significant peak-to-peak strain (SP and SN) and γs (factor of asymmetry) were recorded in the ranges of 0.89–3.32 %, 0.758–3.124 %, and 15.4–34.3 %, correspondingly, with the highest strain memory value (Sme%) 0.362. The doping of Er3+ ions resulted in an extensive augment in saturation polarization (Ps) from 0.781 to 1.884 μC/cm2 and saturation magnetization (Ms) from 0.764 to 3.27 emu/gm, as examined via the P-E hysteresis and M-H hysteresis loops, respectively. Band gap engineering and improved surface reactivity with Er doping led to an improvement in photo-catalytic degradation efficiencies from 64.8 % to 81.4 %.