提高关键任务云任务调度的能源效率和容错性:一种混合整数线性规划方法

IF 3.8 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Mohammadreza Saberikia , Hamed Farbeh , Mahdi Fazeli
{"title":"提高关键任务云任务调度的能源效率和容错性:一种混合整数线性规划方法","authors":"Mohammadreza Saberikia ,&nbsp;Hamed Farbeh ,&nbsp;Mahdi Fazeli","doi":"10.1016/j.suscom.2024.101068","DOIUrl":null,"url":null,"abstract":"<div><div>Cloud services have become indispensable in critical sectors such as healthcare, drones, digital twins, and autonomous vehicles, providing essential infrastructure for data processing and real-time analytics. These systems operate across multiple layers, including edge, fog, and cloud, requiring efficient resource management to ensure reliability and energy efficiency. However, increasing computational demands have led to rising energy consumption and frequent faults in cloud data centers. Inefficient task scheduling exacerbates these issues, causing resource overutilization, execution delays, and redundant processing. Current approaches struggle to optimize energy consumption, execution time, and fault tolerance simultaneously. While some methods offer partial solutions, they suffer from high computational complexity and fail to effectively balance the workloads or manage redundancy. Therefore, a comprehensive task scheduling solution is needed for mission-critical applications. In this article, we introduce a novel scheduling algorithm based on Mixed Integer Linear Programming (MILP) that optimizes task allocation across edge, fog, and cloud environments. Our solution reduces energy consumption, execution time, and failure rates while ensuring balanced distribution of computational loads across virtual machines. Additionally, it incorporates a fault tolerance mechanism that reduces the overlap between primary and backup tasks by distributing them across multiple availability zones. The scheduler’s efficiency is further enhanced by a custom-designed heuristic, ensuring scalability and practical applicability. The proposed MILP-based scheduler demonstrates significant average improvements over the best state-of-the-art algorithms evaluated. It achieves a 9.63% increase in task throughput, reduces energy consumption by 18.20%, shortens execution times by 9.35%, and lowers failure probabilities by 11.50% across all layers of the distributed cloud system. These results highlight the scheduler’s effectiveness in addressing key challenges in energy-efficient and reliable cloud computing for mission-critical applications.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"45 ","pages":"Article 101068"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving energy efficiency and fault tolerance of mission-critical cloud task scheduling: A mixed-integer linear programming approach\",\"authors\":\"Mohammadreza Saberikia ,&nbsp;Hamed Farbeh ,&nbsp;Mahdi Fazeli\",\"doi\":\"10.1016/j.suscom.2024.101068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cloud services have become indispensable in critical sectors such as healthcare, drones, digital twins, and autonomous vehicles, providing essential infrastructure for data processing and real-time analytics. These systems operate across multiple layers, including edge, fog, and cloud, requiring efficient resource management to ensure reliability and energy efficiency. However, increasing computational demands have led to rising energy consumption and frequent faults in cloud data centers. Inefficient task scheduling exacerbates these issues, causing resource overutilization, execution delays, and redundant processing. Current approaches struggle to optimize energy consumption, execution time, and fault tolerance simultaneously. While some methods offer partial solutions, they suffer from high computational complexity and fail to effectively balance the workloads or manage redundancy. Therefore, a comprehensive task scheduling solution is needed for mission-critical applications. In this article, we introduce a novel scheduling algorithm based on Mixed Integer Linear Programming (MILP) that optimizes task allocation across edge, fog, and cloud environments. Our solution reduces energy consumption, execution time, and failure rates while ensuring balanced distribution of computational loads across virtual machines. Additionally, it incorporates a fault tolerance mechanism that reduces the overlap between primary and backup tasks by distributing them across multiple availability zones. The scheduler’s efficiency is further enhanced by a custom-designed heuristic, ensuring scalability and practical applicability. The proposed MILP-based scheduler demonstrates significant average improvements over the best state-of-the-art algorithms evaluated. It achieves a 9.63% increase in task throughput, reduces energy consumption by 18.20%, shortens execution times by 9.35%, and lowers failure probabilities by 11.50% across all layers of the distributed cloud system. These results highlight the scheduler’s effectiveness in addressing key challenges in energy-efficient and reliable cloud computing for mission-critical applications.</div></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"45 \",\"pages\":\"Article 101068\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210537924001136\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537924001136","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

云服务已成为医疗保健、无人机、数字孪生和自动驾驶汽车等关键领域不可或缺的一部分,为数据处理和实时分析提供了必要的基础设施。这些系统跨多个层运行,包括边缘、雾和云,需要高效的资源管理来确保可靠性和能源效率。然而,不断增长的计算需求导致云数据中心的能耗不断上升,故障频发。低效的任务调度加剧了这些问题,导致资源过度利用、执行延迟和冗余处理。当前的方法难以同时优化能耗、执行时间和容错性。虽然有些方法提供了部分解决方案,但它们的计算复杂度较高,无法有效地平衡工作负载或管理冗余。因此,对于任务关键型应用程序,需要一个全面的任务调度解决方案。在本文中,我们介绍了一种基于混合整数线性规划(MILP)的新型调度算法,该算法可以优化跨边缘、雾和云环境的任务分配。我们的解决方案降低了能耗、执行时间和故障率,同时确保了计算负载在虚拟机之间的均衡分布。此外,它还集成了一种容错机制,通过将主任务和备份任务分布到多个可用性区域来减少它们之间的重叠。调度器的效率通过定制设计的启发式进一步提高,确保了可伸缩性和实际适用性。所提出的基于milp的调度器与所评估的最先进的算法相比,具有显著的平均改进。在分布式云系统的所有层中,任务吞吐量提高9.63%,能耗降低18.20%,执行时间缩短9.35%,故障概率降低11.50%。这些结果突出了调度器在解决关键任务应用程序的节能和可靠云计算方面的关键挑战方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving energy efficiency and fault tolerance of mission-critical cloud task scheduling: A mixed-integer linear programming approach
Cloud services have become indispensable in critical sectors such as healthcare, drones, digital twins, and autonomous vehicles, providing essential infrastructure for data processing and real-time analytics. These systems operate across multiple layers, including edge, fog, and cloud, requiring efficient resource management to ensure reliability and energy efficiency. However, increasing computational demands have led to rising energy consumption and frequent faults in cloud data centers. Inefficient task scheduling exacerbates these issues, causing resource overutilization, execution delays, and redundant processing. Current approaches struggle to optimize energy consumption, execution time, and fault tolerance simultaneously. While some methods offer partial solutions, they suffer from high computational complexity and fail to effectively balance the workloads or manage redundancy. Therefore, a comprehensive task scheduling solution is needed for mission-critical applications. In this article, we introduce a novel scheduling algorithm based on Mixed Integer Linear Programming (MILP) that optimizes task allocation across edge, fog, and cloud environments. Our solution reduces energy consumption, execution time, and failure rates while ensuring balanced distribution of computational loads across virtual machines. Additionally, it incorporates a fault tolerance mechanism that reduces the overlap between primary and backup tasks by distributing them across multiple availability zones. The scheduler’s efficiency is further enhanced by a custom-designed heuristic, ensuring scalability and practical applicability. The proposed MILP-based scheduler demonstrates significant average improvements over the best state-of-the-art algorithms evaluated. It achieves a 9.63% increase in task throughput, reduces energy consumption by 18.20%, shortens execution times by 9.35%, and lowers failure probabilities by 11.50% across all layers of the distributed cloud system. These results highlight the scheduler’s effectiveness in addressing key challenges in energy-efficient and reliable cloud computing for mission-critical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Computing-Informatics & Systems
Sustainable Computing-Informatics & Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTUREC-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
10.70
自引率
4.40%
发文量
142
期刊介绍: Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信