探讨热氧化体系下磷脂酰胆碱和甘油三酯对牛肉香气活性化合物形成的贡献

IF 6.2 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Yujie Shi , Jing Li , Longzhu Zhou , Junmin Zhang , Xiaohui Feng , Weihai Xing , Chaohua Tang , Yueyu Bai
{"title":"探讨热氧化体系下磷脂酰胆碱和甘油三酯对牛肉香气活性化合物形成的贡献","authors":"Yujie Shi ,&nbsp;Jing Li ,&nbsp;Longzhu Zhou ,&nbsp;Junmin Zhang ,&nbsp;Xiaohui Feng ,&nbsp;Weihai Xing ,&nbsp;Chaohua Tang ,&nbsp;Yueyu Bai","doi":"10.1016/j.crfs.2025.100973","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal oxidation of phospholipids and triglycerides is a major source of beef aroma compounds. In this study, phosphatidylcholine (PC) and triglyceride (TG) were isolated and purified from beef and added to defatted beef and raw beef. The composition of aroma compounds generated by thermal oxidation in three model systems were compared by flavoromics. The main aroma compounds produced by the thermal oxidation of PC were decanal, (E)-2-nonenal, (E)-2-undecenal, and (E,E)-2,4-decadienal, while the main aroma compounds produced by the thermal oxidation of TG were nonanal, (E)-2-undecenal, and decanal. Nonanal remains the main aroma compound produced by PC and TG in defatted beef. Octanal and nonanal were the major aroma compounds generated by thermal oxidation of raw beef samples spiked with PC and TG. Raw beef with added PC and TG had higher levels of sulfides and heterocycles after thermal oxidation compared to defatted beef with added lipids. The comparison of the aroma profiles in three thermo-oxidative models indicated that PC contributed more than TG to the key odor-active compounds in cooked beef. Additionally, the thermo-oxidative degradation of PC facilitated the formation of Maillard reaction products. However, the beef matrix may inhibit the formation of decanal and (E,E)-2,4-decadienal.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"Article 100973"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the contribution of phosphatidylcholine and triglyceride on the formation of beef aroma-active compounds with thermal oxidation system\",\"authors\":\"Yujie Shi ,&nbsp;Jing Li ,&nbsp;Longzhu Zhou ,&nbsp;Junmin Zhang ,&nbsp;Xiaohui Feng ,&nbsp;Weihai Xing ,&nbsp;Chaohua Tang ,&nbsp;Yueyu Bai\",\"doi\":\"10.1016/j.crfs.2025.100973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermal oxidation of phospholipids and triglycerides is a major source of beef aroma compounds. In this study, phosphatidylcholine (PC) and triglyceride (TG) were isolated and purified from beef and added to defatted beef and raw beef. The composition of aroma compounds generated by thermal oxidation in three model systems were compared by flavoromics. The main aroma compounds produced by the thermal oxidation of PC were decanal, (E)-2-nonenal, (E)-2-undecenal, and (E,E)-2,4-decadienal, while the main aroma compounds produced by the thermal oxidation of TG were nonanal, (E)-2-undecenal, and decanal. Nonanal remains the main aroma compound produced by PC and TG in defatted beef. Octanal and nonanal were the major aroma compounds generated by thermal oxidation of raw beef samples spiked with PC and TG. Raw beef with added PC and TG had higher levels of sulfides and heterocycles after thermal oxidation compared to defatted beef with added lipids. The comparison of the aroma profiles in three thermo-oxidative models indicated that PC contributed more than TG to the key odor-active compounds in cooked beef. Additionally, the thermo-oxidative degradation of PC facilitated the formation of Maillard reaction products. However, the beef matrix may inhibit the formation of decanal and (E,E)-2,4-decadienal.</div></div>\",\"PeriodicalId\":10939,\"journal\":{\"name\":\"Current Research in Food Science\",\"volume\":\"10 \",\"pages\":\"Article 100973\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665927125000048\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665927125000048","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

热氧化的磷脂和甘油三酯是牛肉香气化合物的主要来源。本研究从牛肉中分离纯化了磷脂酰胆碱(PC)和甘油三酯(TG),并将其添加到脱脂牛肉和生牛肉中。用风味组学方法比较了三种模型系统中热氧化产生的香气化合物的组成。PC热氧化产生的主要香气化合物为癸醛、(E)-2-壬烯醛、(E)-2-癸烯醛和(E,E)-2,4-十烯醛;TG热氧化产生的主要香气化合物为壬醛、(E)-2-癸烯醛和癸醛。壬醛仍然是脱脂牛肉中PC和TG产生的主要香气化合物。添加PC和TG的生牛肉样品经热氧化后产生的主要香气化合物为辛醛和壬醛。与添加脂肪的脱脂牛肉相比,添加PC和TG的生牛肉在热氧化后具有更高的硫化物和杂环化合物水平。三种热氧化模型的香气谱比较表明,PC对熟牛肉中关键气味活性物质的贡献大于TG。此外,PC的热氧化降解促进了美拉德反应产物的形成。然而,牛肉基质可能抑制十烷醛和(E,E)-2,4-十烷醛的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring the contribution of phosphatidylcholine and triglyceride on the formation of beef aroma-active compounds with thermal oxidation system

Exploring the contribution of phosphatidylcholine and triglyceride on the formation of beef aroma-active compounds with thermal oxidation system
Thermal oxidation of phospholipids and triglycerides is a major source of beef aroma compounds. In this study, phosphatidylcholine (PC) and triglyceride (TG) were isolated and purified from beef and added to defatted beef and raw beef. The composition of aroma compounds generated by thermal oxidation in three model systems were compared by flavoromics. The main aroma compounds produced by the thermal oxidation of PC were decanal, (E)-2-nonenal, (E)-2-undecenal, and (E,E)-2,4-decadienal, while the main aroma compounds produced by the thermal oxidation of TG were nonanal, (E)-2-undecenal, and decanal. Nonanal remains the main aroma compound produced by PC and TG in defatted beef. Octanal and nonanal were the major aroma compounds generated by thermal oxidation of raw beef samples spiked with PC and TG. Raw beef with added PC and TG had higher levels of sulfides and heterocycles after thermal oxidation compared to defatted beef with added lipids. The comparison of the aroma profiles in three thermo-oxidative models indicated that PC contributed more than TG to the key odor-active compounds in cooked beef. Additionally, the thermo-oxidative degradation of PC facilitated the formation of Maillard reaction products. However, the beef matrix may inhibit the formation of decanal and (E,E)-2,4-decadienal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Research in Food Science
Current Research in Food Science Agricultural and Biological Sciences-Food Science
CiteScore
7.40
自引率
3.20%
发文量
232
审稿时长
84 days
期刊介绍: Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信