一个简单的共识模型,用于不断增长的具有传入意见的代理群体

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Ioannis Markou
{"title":"一个简单的共识模型,用于不断增长的具有传入意见的代理群体","authors":"Ioannis Markou","doi":"10.1016/j.spl.2024.110345","DOIUrl":null,"url":null,"abstract":"<div><div>In this short note we study what happens in a symmetric opinion model when we send the total interacting population <span><math><mrow><mi>N</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> to infinity as <span><math><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. We assume that new population enters the system with opinions that are i.i.d random vectors with finite mean and variance. We give sharp conditions on the rate of population growth that is required for convergence to a global consensus in opinions. More particularly, we show that if the total population increases at a rate <span><math><mrow><mi>N</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>∼</mo><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></msup></mrow></math></span>, then <span><math><mrow><mi>α</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> is necessary and sufficient condition for convergence to the mean of incoming opinions, and the convergence is achieved at an algebraic rate.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"220 ","pages":"Article 110345"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simple consensus model for an increasing population of agents with i.i.d incoming opinions\",\"authors\":\"Ioannis Markou\",\"doi\":\"10.1016/j.spl.2024.110345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this short note we study what happens in a symmetric opinion model when we send the total interacting population <span><math><mrow><mi>N</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> to infinity as <span><math><mrow><mi>t</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. We assume that new population enters the system with opinions that are i.i.d random vectors with finite mean and variance. We give sharp conditions on the rate of population growth that is required for convergence to a global consensus in opinions. More particularly, we show that if the total population increases at a rate <span><math><mrow><mi>N</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>∼</mo><msup><mrow><mi>e</mi></mrow><mrow><msup><mrow><mi>t</mi></mrow><mrow><mi>α</mi></mrow></msup></mrow></msup></mrow></math></span>, then <span><math><mrow><mi>α</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span> is necessary and sufficient condition for convergence to the mean of incoming opinions, and the convergence is achieved at an algebraic rate.</div></div>\",\"PeriodicalId\":49475,\"journal\":{\"name\":\"Statistics & Probability Letters\",\"volume\":\"220 \",\"pages\":\"Article 110345\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Probability Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715224003146\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224003146","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在这篇短文中,我们研究当我们将相互作用的总体N(t)发送到∞时,当t→∞时,在对称意见模型中会发生什么。我们假设进入系统的新群体的意见是具有有限均值和方差的随机向量。我们对人口增长率提出了苛刻的条件,这是趋同于全球意见协商一致所必需的。更具体地说,我们证明了如果总体以N(t) ~ etα的速率增长,则α<;1是收敛到所得意见均值的充分必要条件,并且收敛以代数速率实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simple consensus model for an increasing population of agents with i.i.d incoming opinions
In this short note we study what happens in a symmetric opinion model when we send the total interacting population N(t) to infinity as t. We assume that new population enters the system with opinions that are i.i.d random vectors with finite mean and variance. We give sharp conditions on the rate of population growth that is required for convergence to a global consensus in opinions. More particularly, we show that if the total population increases at a rate N(t)etα, then α<1 is necessary and sufficient condition for convergence to the mean of incoming opinions, and the convergence is achieved at an algebraic rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics & Probability Letters
Statistics & Probability Letters 数学-统计学与概率论
CiteScore
1.60
自引率
0.00%
发文量
173
审稿时长
6 months
期刊介绍: Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature. Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission. The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability. The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信