IF 0.7 2区 数学 Q2 MATHEMATICS
Grigore Călugăreanu , Horia F. Pop , Adrian Vasiu
{"title":"Matrix invertible extensions over commutative rings. Part I: General theory","authors":"Grigore Călugăreanu ,&nbsp;Horia F. Pop ,&nbsp;Adrian Vasiu","doi":"10.1016/j.jpaa.2024.107852","DOIUrl":null,"url":null,"abstract":"<div><div>A unimodular <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> matrix with entries in a commutative <em>R</em> is called extendable (resp. simply extendable) if it extends to an invertible <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> matrix (resp. invertible <span><math><mn>3</mn><mo>×</mo><mn>3</mn></math></span> matrix whose <span><math><mo>(</mo><mn>3</mn><mo>,</mo><mn>3</mn><mo>)</mo></math></span> entry is 0). We obtain necessary and sufficient conditions for a unimodular <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> matrix to be extendable (resp. simply extendable) and use them to study the class <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (resp. <span><math><mi>S</mi><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>) of rings <em>R</em> with the property that all unimodular <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> matrices with entries in <em>R</em> are extendable (resp. simply extendable). We also study the larger class <span><math><msub><mrow><mi>Π</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of rings <em>R</em> with the property that all unimodular <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> matrices of determinant 0 and with entries in <em>R</em> are (simply) extendable (e.g., rings with trivial Picard groups or pre-Schreier domains). Among Dedekind domains, polynomial rings over <span><math><mi>Z</mi></math></span> and Hermite rings, only the EDRs belong to the class <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> or <span><math><mi>S</mi><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. If <em>R</em> has stable range at most 2 (e.g., <em>R</em> is a Hermite ring or <span><math><mi>dim</mi><mo>⁡</mo><mo>(</mo><mi>R</mi><mo>)</mo><mo>≤</mo><mn>1</mn></math></span>), then <em>R</em> is an <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> ring iff it is an <span><math><mi>S</mi><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> ring.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 1","pages":"Article 107852"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002494","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一个单模2×2矩阵,其元素在可交换的R中被称为可扩展矩阵。简单可扩展),如果它扩展到可逆3×3矩阵(参见。(3,3)项为0的可逆3×3矩阵。我们得到了一个非模2×2矩阵可扩展的充分必要条件。简单地可扩展),并使用它们来研究类E2(参见2)。SE2)的环R,具有所有在R中有元素的单模2×2矩阵都是可扩展的性质。简单的可扩展)。我们还研究了更大的类Π2环R,其性质是,所有行列式为0且在R中有元素的幺模2×2矩阵(简单地)是可扩展的(例如,具有平凡Picard群或pre-Schreier域的环)。在Dedekind结构域、Z上的多项式环和Hermite环中,只有edr属于E2或SE2类。如果R的稳定值域不超过2(例如R是Hermite环或dim (R)≤1),则R是SE2环,则R是E2环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix invertible extensions over commutative rings. Part I: General theory
A unimodular 2×2 matrix with entries in a commutative R is called extendable (resp. simply extendable) if it extends to an invertible 3×3 matrix (resp. invertible 3×3 matrix whose (3,3) entry is 0). We obtain necessary and sufficient conditions for a unimodular 2×2 matrix to be extendable (resp. simply extendable) and use them to study the class E2 (resp. SE2) of rings R with the property that all unimodular 2×2 matrices with entries in R are extendable (resp. simply extendable). We also study the larger class Π2 of rings R with the property that all unimodular 2×2 matrices of determinant 0 and with entries in R are (simply) extendable (e.g., rings with trivial Picard groups or pre-Schreier domains). Among Dedekind domains, polynomial rings over Z and Hermite rings, only the EDRs belong to the class E2 or SE2. If R has stable range at most 2 (e.g., R is a Hermite ring or dim(R)1), then R is an E2 ring iff it is an SE2 ring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信