Frobenius和拟Frobenius左Hopf代数群

IF 0.7 2区 数学 Q2 MATHEMATICS
Sophie Chemla
{"title":"Frobenius和拟Frobenius左Hopf代数群","authors":"Sophie Chemla","doi":"10.1016/j.jpaa.2024.107844","DOIUrl":null,"url":null,"abstract":"<div><div>We study when left (op)Hopf algebroids in the sense of Takeuchi-Schauenburg give rise to a Frobenius or quasi-Frobenius extension. The case of Hopf algebroids in the sense of Böhm was treated by G. Böhm (<span><span>[4]</span></span>). Contrary to Hopf algebroids, (op)Hopf left algebroids don't necessarily have an antipode but their Hopf-Galois map is invertible. We make use of recent results about left Hopf algebroids (<span><span>[18]</span></span>, <span><span>[35]</span></span>, <span><span>[25]</span></span>). Our results are applied to the restricted enveloping algebra of a restricted Lie-Rinehart algebra.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 1","pages":"Article 107844"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frobenius and quasi-Frobenius left Hopf algebroids\",\"authors\":\"Sophie Chemla\",\"doi\":\"10.1016/j.jpaa.2024.107844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study when left (op)Hopf algebroids in the sense of Takeuchi-Schauenburg give rise to a Frobenius or quasi-Frobenius extension. The case of Hopf algebroids in the sense of Böhm was treated by G. Böhm (<span><span>[4]</span></span>). Contrary to Hopf algebroids, (op)Hopf left algebroids don't necessarily have an antipode but their Hopf-Galois map is invertible. We make use of recent results about left Hopf algebroids (<span><span>[18]</span></span>, <span><span>[35]</span></span>, <span><span>[25]</span></span>). Our results are applied to the restricted enveloping algebra of a restricted Lie-Rinehart algebra.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 1\",\"pages\":\"Article 107844\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002240492400241X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240492400241X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了Takeuchi-Schauenburg意义上的左(op)Hopf代数群何时产生Frobenius或拟Frobenius扩展。对于Hopf代数群在Böhm意义上的情况,用G. Böhm([4])处理。与Hopf代数群相反,(op)Hopf左代数群不一定有对映体,但它们的Hopf-伽罗瓦映射是可逆的。利用了关于左Hopf代数群([18],[35],[25])的最新结果。我们的结果应用于一类受限Lie-Rinehart代数的受限包络代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frobenius and quasi-Frobenius left Hopf algebroids
We study when left (op)Hopf algebroids in the sense of Takeuchi-Schauenburg give rise to a Frobenius or quasi-Frobenius extension. The case of Hopf algebroids in the sense of Böhm was treated by G. Böhm ([4]). Contrary to Hopf algebroids, (op)Hopf left algebroids don't necessarily have an antipode but their Hopf-Galois map is invertible. We make use of recent results about left Hopf algebroids ([18], [35], [25]). Our results are applied to the restricted enveloping algebra of a restricted Lie-Rinehart algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信