海藻酸盐-纤维素基生物链接模拟黑色素瘤微环境的粘弹性特征及其对细胞周期和侵袭的影响

Q1 Computer Science
Carolin Eckert , Sonja Schmidt , Jessica Faber , Rainer Detsch , Martin Vielreicher , Zan Lamberger , Philipp Stahlhut , Evelin Sandor , Tannaz Karimi , Rafael Schmid , Andreas Arkudas , Oliver Friedrich , Silvia Budday , Gregor Lang , Annika Kengelbach-Weigand , Anja Bosserhoff
{"title":"海藻酸盐-纤维素基生物链接模拟黑色素瘤微环境的粘弹性特征及其对细胞周期和侵袭的影响","authors":"Carolin Eckert ,&nbsp;Sonja Schmidt ,&nbsp;Jessica Faber ,&nbsp;Rainer Detsch ,&nbsp;Martin Vielreicher ,&nbsp;Zan Lamberger ,&nbsp;Philipp Stahlhut ,&nbsp;Evelin Sandor ,&nbsp;Tannaz Karimi ,&nbsp;Rafael Schmid ,&nbsp;Andreas Arkudas ,&nbsp;Oliver Friedrich ,&nbsp;Silvia Budday ,&nbsp;Gregor Lang ,&nbsp;Annika Kengelbach-Weigand ,&nbsp;Anja Bosserhoff","doi":"10.1016/j.bprint.2024.e00384","DOIUrl":null,"url":null,"abstract":"<div><div>Melanoma, an aggressive tumor from melanocytes, poses challenges despite recent therapeutic advances. Understanding molecular changes in its progression is crucial. Melanoma cells develop in the epidermis, then start spreading into the dermis– the first step of the invasive, progressive process. The dermis is composed of elastic (proteoglycans) and stabilizing (collagens) molecules. To overcome limitations of 2D-cell culture models, we established a 3D-bio-printed dermis model for the analysis of tumor cell features using a blend of alginate and microfibrillar cellulose. Testing different compositions in extrusion-based bioprinting confirmed good printability with high cell viability for AlgCell ink. Mechanical and optical analyses revealed dermis-like viscoelasticity and a pore size allowing nutrition supply and cell movement. We evaluated survival and proliferation of the cells and printed tumor spheroids and determined different migratory behavior comparing alginate to AlgCell. Interestingly, multiphoton microscopy revealed random cellulose fiber distribution around the spheroids after 7 days of cultivation with individual single cells, which had left the tumor spheroid and invaded into the microenvironment. Traditional 2D-models inadequately capture 3D mechanisms like invasion and migration. Our 3D-tumor model mimics the microenvironment, enabling in-depth analyses akin to <em>in vivo</em> conditions. This promises insights into tumor progression and testing of therapeutic interventions.</div></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"46 ","pages":"Article e00384"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An alginate-cellulose based bioink mimics the viscoelastic features of the melanoma microenvironment and its influence on cell cycle and invasion\",\"authors\":\"Carolin Eckert ,&nbsp;Sonja Schmidt ,&nbsp;Jessica Faber ,&nbsp;Rainer Detsch ,&nbsp;Martin Vielreicher ,&nbsp;Zan Lamberger ,&nbsp;Philipp Stahlhut ,&nbsp;Evelin Sandor ,&nbsp;Tannaz Karimi ,&nbsp;Rafael Schmid ,&nbsp;Andreas Arkudas ,&nbsp;Oliver Friedrich ,&nbsp;Silvia Budday ,&nbsp;Gregor Lang ,&nbsp;Annika Kengelbach-Weigand ,&nbsp;Anja Bosserhoff\",\"doi\":\"10.1016/j.bprint.2024.e00384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Melanoma, an aggressive tumor from melanocytes, poses challenges despite recent therapeutic advances. Understanding molecular changes in its progression is crucial. Melanoma cells develop in the epidermis, then start spreading into the dermis– the first step of the invasive, progressive process. The dermis is composed of elastic (proteoglycans) and stabilizing (collagens) molecules. To overcome limitations of 2D-cell culture models, we established a 3D-bio-printed dermis model for the analysis of tumor cell features using a blend of alginate and microfibrillar cellulose. Testing different compositions in extrusion-based bioprinting confirmed good printability with high cell viability for AlgCell ink. Mechanical and optical analyses revealed dermis-like viscoelasticity and a pore size allowing nutrition supply and cell movement. We evaluated survival and proliferation of the cells and printed tumor spheroids and determined different migratory behavior comparing alginate to AlgCell. Interestingly, multiphoton microscopy revealed random cellulose fiber distribution around the spheroids after 7 days of cultivation with individual single cells, which had left the tumor spheroid and invaded into the microenvironment. Traditional 2D-models inadequately capture 3D mechanisms like invasion and migration. Our 3D-tumor model mimics the microenvironment, enabling in-depth analyses akin to <em>in vivo</em> conditions. This promises insights into tumor progression and testing of therapeutic interventions.</div></div>\",\"PeriodicalId\":37770,\"journal\":{\"name\":\"Bioprinting\",\"volume\":\"46 \",\"pages\":\"Article e00384\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprinting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405886624000563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886624000563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

黑色素瘤是一种来自黑色素细胞的侵袭性肿瘤,尽管最近治疗取得了进展,但仍面临挑战。了解其发展过程中的分子变化是至关重要的。黑色素瘤细胞在表皮发育,然后开始向真皮扩散——这是侵入性进展过程的第一步。真皮由弹性(蛋白聚糖)和稳定(胶原)分子组成。为了克服2d细胞培养模型的局限性,我们使用海藻酸盐和微纤维纤维素的混合物建立了3d生物打印真皮模型,用于分析肿瘤细胞特征。在基于挤压的生物打印中测试不同的成分,证实了AlgCell墨水具有良好的打印性和高细胞活力。机械和光学分析揭示了真皮样的粘弹性和允许营养供应和细胞运动的孔径。我们评估了细胞和打印的肿瘤球体的存活和增殖,并确定了海藻酸盐和海藻细胞的不同迁移行为。有趣的是,在多光子显微镜下,单个单细胞培养7天后,纤维素纤维在球体周围随机分布,这些纤维已经离开肿瘤球体并侵入微环境。传统的2d模型不能充分捕捉入侵和迁移等3D机制。我们的3d肿瘤模型模拟微环境,使深入分析类似于体内条件。这有望深入了解肿瘤进展和测试治疗干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An alginate-cellulose based bioink mimics the viscoelastic features of the melanoma microenvironment and its influence on cell cycle and invasion

An alginate-cellulose based bioink mimics the viscoelastic features of the melanoma microenvironment and its influence on cell cycle and invasion
Melanoma, an aggressive tumor from melanocytes, poses challenges despite recent therapeutic advances. Understanding molecular changes in its progression is crucial. Melanoma cells develop in the epidermis, then start spreading into the dermis– the first step of the invasive, progressive process. The dermis is composed of elastic (proteoglycans) and stabilizing (collagens) molecules. To overcome limitations of 2D-cell culture models, we established a 3D-bio-printed dermis model for the analysis of tumor cell features using a blend of alginate and microfibrillar cellulose. Testing different compositions in extrusion-based bioprinting confirmed good printability with high cell viability for AlgCell ink. Mechanical and optical analyses revealed dermis-like viscoelasticity and a pore size allowing nutrition supply and cell movement. We evaluated survival and proliferation of the cells and printed tumor spheroids and determined different migratory behavior comparing alginate to AlgCell. Interestingly, multiphoton microscopy revealed random cellulose fiber distribution around the spheroids after 7 days of cultivation with individual single cells, which had left the tumor spheroid and invaded into the microenvironment. Traditional 2D-models inadequately capture 3D mechanisms like invasion and migration. Our 3D-tumor model mimics the microenvironment, enabling in-depth analyses akin to in vivo conditions. This promises insights into tumor progression and testing of therapeutic interventions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprinting
Bioprinting Computer Science-Computer Science Applications
CiteScore
11.50
自引率
0.00%
发文量
72
审稿时长
68 days
期刊介绍: Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信