用微流体技术制造器官芯片

Q1 Computer Science
S. Ying-Jin , I. Yuste , E. González-Burgos , D.R. Serrano
{"title":"用微流体技术制造器官芯片","authors":"S. Ying-Jin ,&nbsp;I. Yuste ,&nbsp;E. González-Burgos ,&nbsp;D.R. Serrano","doi":"10.1016/j.bprint.2025.e00394","DOIUrl":null,"url":null,"abstract":"<div><div>The use of microfluidic devices represents a significant advancement beyond conventional techniques in the development of innovative <em>in vitro</em> assays. Microfluidic chips are specialized devices that precisely control fluids at the microscale level through intricate microchannels, enabling the replication of physical and chemical conditions. When combined with tissue engineering, these chips have evolved into highly specialized tools known as Organ-on-a-Chip (OoC) devices, which can simulate the physiology and functionality of various human tissues and organs. OoC devices are cutting-edge technologies that integrate a biological component representing the target organ with a microfluidic component that mimics blood flow. This combination allows for the replication of biological structures with a more accurate representation of the <em>in vivo</em> physiological cellular microenvironment, which can be finely tuned by adjusting the flow rate and composition. As a result, novel microfluidic models for <em>in vitro</em> research can overcome the limitations of traditional 2D and 3D static cell cultures, enabling faster clinical translation and more precise predictions of the efficacy, safety, pharmacodynamics, and pharmacokinetics of new drugs. This review will discuss various techniques for fabricating OoCs and their applications in mimicking different physiological microenvironments.</div></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"46 ","pages":"Article e00394"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of organ-on-a-chip using microfluidics\",\"authors\":\"S. Ying-Jin ,&nbsp;I. Yuste ,&nbsp;E. González-Burgos ,&nbsp;D.R. Serrano\",\"doi\":\"10.1016/j.bprint.2025.e00394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The use of microfluidic devices represents a significant advancement beyond conventional techniques in the development of innovative <em>in vitro</em> assays. Microfluidic chips are specialized devices that precisely control fluids at the microscale level through intricate microchannels, enabling the replication of physical and chemical conditions. When combined with tissue engineering, these chips have evolved into highly specialized tools known as Organ-on-a-Chip (OoC) devices, which can simulate the physiology and functionality of various human tissues and organs. OoC devices are cutting-edge technologies that integrate a biological component representing the target organ with a microfluidic component that mimics blood flow. This combination allows for the replication of biological structures with a more accurate representation of the <em>in vivo</em> physiological cellular microenvironment, which can be finely tuned by adjusting the flow rate and composition. As a result, novel microfluidic models for <em>in vitro</em> research can overcome the limitations of traditional 2D and 3D static cell cultures, enabling faster clinical translation and more precise predictions of the efficacy, safety, pharmacodynamics, and pharmacokinetics of new drugs. This review will discuss various techniques for fabricating OoCs and their applications in mimicking different physiological microenvironments.</div></div>\",\"PeriodicalId\":37770,\"journal\":{\"name\":\"Bioprinting\",\"volume\":\"46 \",\"pages\":\"Article e00394\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprinting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405886625000107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886625000107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

微流控装置的使用代表了在创新体外检测发展中超越传统技术的重大进步。微流控芯片是通过复杂的微通道在微尺度上精确控制流体的专用设备,可以复制物理和化学条件。当与组织工程相结合时,这些芯片已经发展成为高度专业化的工具,称为器官芯片(OoC)设备,可以模拟各种人体组织和器官的生理和功能。OoC设备是一种尖端技术,它将代表目标器官的生物成分与模拟血液流动的微流体成分结合在一起。这种组合允许生物结构的复制,更准确地表示体内生理细胞微环境,这可以通过调节流速和组成来精细调节。因此,用于体外研究的新型微流体模型可以克服传统的2D和3D静态细胞培养的局限性,实现更快的临床翻译和更精确的新药疗效、安全性、药效学和药代动力学预测。本文将讨论各种制备OoCs的技术及其在模拟不同生理微环境中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fabrication of organ-on-a-chip using microfluidics

Fabrication of organ-on-a-chip using microfluidics
The use of microfluidic devices represents a significant advancement beyond conventional techniques in the development of innovative in vitro assays. Microfluidic chips are specialized devices that precisely control fluids at the microscale level through intricate microchannels, enabling the replication of physical and chemical conditions. When combined with tissue engineering, these chips have evolved into highly specialized tools known as Organ-on-a-Chip (OoC) devices, which can simulate the physiology and functionality of various human tissues and organs. OoC devices are cutting-edge technologies that integrate a biological component representing the target organ with a microfluidic component that mimics blood flow. This combination allows for the replication of biological structures with a more accurate representation of the in vivo physiological cellular microenvironment, which can be finely tuned by adjusting the flow rate and composition. As a result, novel microfluidic models for in vitro research can overcome the limitations of traditional 2D and 3D static cell cultures, enabling faster clinical translation and more precise predictions of the efficacy, safety, pharmacodynamics, and pharmacokinetics of new drugs. This review will discuss various techniques for fabricating OoCs and their applications in mimicking different physiological microenvironments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprinting
Bioprinting Computer Science-Computer Science Applications
CiteScore
11.50
自引率
0.00%
发文量
72
审稿时长
68 days
期刊介绍: Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信