欧拉取向计数的累积展开

IF 1.2 1区 数学 Q1 MATHEMATICS
Mikhail Isaev , Brendan D. McKay , Rui-Ray Zhang
{"title":"欧拉取向计数的累积展开","authors":"Mikhail Isaev ,&nbsp;Brendan D. McKay ,&nbsp;Rui-Ray Zhang","doi":"10.1016/j.jctb.2025.01.002","DOIUrl":null,"url":null,"abstract":"<div><div>An Eulerian orientation is an orientation of the edges of a graph such that every vertex is balanced: its in-degree equals its out-degree. Counting Eulerian orientations corresponds to the crucial partition function in so-called “ice-type models” in statistical physics and is known to be hard for general graphs. For all graphs with good expansion properties and degrees larger than <span><math><msup><mrow><mi>log</mi></mrow><mrow><mn>8</mn></mrow></msup><mo>⁡</mo><mi>n</mi></math></span>, we derive an asymptotic expansion for this count that approximates it to precision <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>c</mi></mrow></msup><mo>)</mo></math></span> for arbitrarily large <em>c</em>, where <em>n</em> is the number of vertices. The proof relies on a new tail bound for the cumulant expansion of the Laplace transform, which is of independent interest.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 263-314"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cumulant expansion for counting Eulerian orientations\",\"authors\":\"Mikhail Isaev ,&nbsp;Brendan D. McKay ,&nbsp;Rui-Ray Zhang\",\"doi\":\"10.1016/j.jctb.2025.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An Eulerian orientation is an orientation of the edges of a graph such that every vertex is balanced: its in-degree equals its out-degree. Counting Eulerian orientations corresponds to the crucial partition function in so-called “ice-type models” in statistical physics and is known to be hard for general graphs. For all graphs with good expansion properties and degrees larger than <span><math><msup><mrow><mi>log</mi></mrow><mrow><mn>8</mn></mrow></msup><mo>⁡</mo><mi>n</mi></math></span>, we derive an asymptotic expansion for this count that approximates it to precision <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>c</mi></mrow></msup><mo>)</mo></math></span> for arbitrarily large <em>c</em>, where <em>n</em> is the number of vertices. The proof relies on a new tail bound for the cumulant expansion of the Laplace transform, which is of independent interest.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"172 \",\"pages\":\"Pages 263-314\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000036\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000036","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

欧拉方向是一个图的边的方向,使得每个顶点都是平衡的:它的入度等于它的出度。计算欧拉方向对应于统计物理中所谓的“冰型模型”中的关键配分函数,并且对于一般图形来说是困难的。对于所有具有良好展开性且度大于log8 n的图,我们推导出该计数的渐近展开式,对于任意大的c,该计数近似于精度O(n - c),其中n是顶点数。证明依赖于拉普拉斯变换的累积展开的一个新的尾界,这是一个独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cumulant expansion for counting Eulerian orientations
An Eulerian orientation is an orientation of the edges of a graph such that every vertex is balanced: its in-degree equals its out-degree. Counting Eulerian orientations corresponds to the crucial partition function in so-called “ice-type models” in statistical physics and is known to be hard for general graphs. For all graphs with good expansion properties and degrees larger than log8n, we derive an asymptotic expansion for this count that approximates it to precision O(nc) for arbitrarily large c, where n is the number of vertices. The proof relies on a new tail bound for the cumulant expansion of the Laplace transform, which is of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信