Andrásfai猜想的下一个例子

IF 1.2 1区 数学 Q1 MATHEMATICS
Tomasz Łuczak , Joanna Polcyn , Christian Reiher
{"title":"Andrásfai猜想的下一个例子","authors":"Tomasz Łuczak ,&nbsp;Joanna Polcyn ,&nbsp;Christian Reiher","doi":"10.1016/j.jctb.2024.12.010","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> denote the maximum number of edges in a triangle-free graph on <em>n</em> vertices which contains no independent sets larger than <em>s</em>. The behaviour of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> was first studied by Andrásfai, who conjectured that for <span><math><mi>s</mi><mo>&gt;</mo><mi>n</mi><mo>/</mo><mn>3</mn></math></span> this function is determined by appropriately chosen blow-ups of so called Andrásfai graphs. Moreover, he proved <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>4</mn><mi>n</mi><mi>s</mi><mo>+</mo><mn>5</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <span><math><mi>s</mi><mo>/</mo><mi>n</mi><mo>∈</mo><mo>[</mo><mn>2</mn><mo>/</mo><mn>5</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>]</mo></math></span> and in earlier work we obtained <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>=</mo><mn>3</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>15</mn><mi>n</mi><mi>s</mi><mo>+</mo><mn>20</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <span><math><mi>s</mi><mo>/</mo><mi>n</mi><mo>∈</mo><mo>[</mo><mn>3</mn><mo>/</mo><mn>8</mn><mo>,</mo><mn>2</mn><mo>/</mo><mn>5</mn><mo>]</mo></math></span>. Here we make the next step in the quest to settle Andrásfai's conjecture by proving <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>=</mo><mn>6</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>32</mn><mi>n</mi><mi>s</mi><mo>+</mo><mn>44</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <span><math><mi>s</mi><mo>/</mo><mi>n</mi><mo>∈</mo><mo>[</mo><mn>4</mn><mo>/</mo><mn>11</mn><mo>,</mo><mn>3</mn><mo>/</mo><mn>8</mn><mo>]</mo></math></span>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 198-220"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The next case of Andrásfai's conjecture\",\"authors\":\"Tomasz Łuczak ,&nbsp;Joanna Polcyn ,&nbsp;Christian Reiher\",\"doi\":\"10.1016/j.jctb.2024.12.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> denote the maximum number of edges in a triangle-free graph on <em>n</em> vertices which contains no independent sets larger than <em>s</em>. The behaviour of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo></math></span> was first studied by Andrásfai, who conjectured that for <span><math><mi>s</mi><mo>&gt;</mo><mi>n</mi><mo>/</mo><mn>3</mn></math></span> this function is determined by appropriately chosen blow-ups of so called Andrásfai graphs. Moreover, he proved <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>4</mn><mi>n</mi><mi>s</mi><mo>+</mo><mn>5</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <span><math><mi>s</mi><mo>/</mo><mi>n</mi><mo>∈</mo><mo>[</mo><mn>2</mn><mo>/</mo><mn>5</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>]</mo></math></span> and in earlier work we obtained <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>=</mo><mn>3</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>15</mn><mi>n</mi><mi>s</mi><mo>+</mo><mn>20</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <span><math><mi>s</mi><mo>/</mo><mi>n</mi><mo>∈</mo><mo>[</mo><mn>3</mn><mo>/</mo><mn>8</mn><mo>,</mo><mn>2</mn><mo>/</mo><mn>5</mn><mo>]</mo></math></span>. Here we make the next step in the quest to settle Andrásfai's conjecture by proving <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>s</mi><mo>)</mo><mo>=</mo><mn>6</mn><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>32</mn><mi>n</mi><mi>s</mi><mo>+</mo><mn>44</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <span><math><mi>s</mi><mo>/</mo><mi>n</mi><mo>∈</mo><mo>[</mo><mn>4</mn><mo>/</mo><mn>11</mn><mo>,</mo><mn>3</mn><mo>/</mo><mn>8</mn><mo>]</mo></math></span>.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"172 \",\"pages\":\"Pages 198-220\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000012\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000012","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设ex(n,s)表示无三角形图在n个顶点上的最大边数,其中不包含大于s的独立集。Andrásfai首先研究了ex(n,s)的行为,他推测对于s>;n/3,该函数由适当选择的所谓Andrásfai图的放大决定。此外,他证明了对于s/n∈[2/5,1/2],ex(n,s)=n2−4ns+5s2,在之前的工作中,我们得到了对于s/n∈[3/8,2/5],ex(n,s)=3n2−15ns+20s2。在这里,我们通过证明s/n∈[4/11,3/8]的ex(n,s)=6n2−32ns+44s2来解决Andrásfai猜想的下一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The next case of Andrásfai's conjecture
Let ex(n,s) denote the maximum number of edges in a triangle-free graph on n vertices which contains no independent sets larger than s. The behaviour of ex(n,s) was first studied by Andrásfai, who conjectured that for s>n/3 this function is determined by appropriately chosen blow-ups of so called Andrásfai graphs. Moreover, he proved ex(n,s)=n24ns+5s2 for s/n[2/5,1/2] and in earlier work we obtained ex(n,s)=3n215ns+20s2 for s/n[3/8,2/5]. Here we make the next step in the quest to settle Andrásfai's conjecture by proving ex(n,s)=6n232ns+44s2 for s/n[4/11,3/8].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信