Kővári-Sós-Turán世袭家族定理

IF 1.2 1区 数学 Q1 MATHEMATICS
Zach Hunter , Aleksa Milojević , Benny Sudakov , István Tomon
{"title":"Kővári-Sós-Turán世袭家族定理","authors":"Zach Hunter ,&nbsp;Aleksa Milojević ,&nbsp;Benny Sudakov ,&nbsp;István Tomon","doi":"10.1016/j.jctb.2024.12.009","DOIUrl":null,"url":null,"abstract":"<div><div>The celebrated Kővári-Sós-Turán theorem states that any <em>n</em>-vertex graph containing no copy of the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> has at most <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>s</mi></mrow></msup><mo>)</mo></math></span> edges. In the past two decades, motivated by the applications in discrete geometry and structural graph theory, a number of results demonstrated that this bound can be greatly improved if the graph satisfies certain structural restrictions. We propose the systematic study of this phenomenon, and state the conjecture that if <em>H</em> is a bipartite graph, then an induced <em>H</em>-free and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span>-free graph cannot have much more edges than an <em>H</em>-free graph. We provide evidence for this conjecture by considering trees, cycles, the cube graph, and bipartite graphs with degrees bounded by <em>k</em> on one side, obtaining in all the cases similar bounds as in the non-induced setting. Our results also have applications to the Erdős-Hajnal conjecture, the problem of finding induced <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free subgraphs with large degree and bounding the average degree of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span>-free graphs which do not contain induced subdivisions of a fixed graph.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 168-197"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kővári-Sós-Turán theorem for hereditary families\",\"authors\":\"Zach Hunter ,&nbsp;Aleksa Milojević ,&nbsp;Benny Sudakov ,&nbsp;István Tomon\",\"doi\":\"10.1016/j.jctb.2024.12.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The celebrated Kővári-Sós-Turán theorem states that any <em>n</em>-vertex graph containing no copy of the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> has at most <span><math><msub><mrow><mi>O</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>s</mi></mrow></msup><mo>)</mo></math></span> edges. In the past two decades, motivated by the applications in discrete geometry and structural graph theory, a number of results demonstrated that this bound can be greatly improved if the graph satisfies certain structural restrictions. We propose the systematic study of this phenomenon, and state the conjecture that if <em>H</em> is a bipartite graph, then an induced <em>H</em>-free and <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span>-free graph cannot have much more edges than an <em>H</em>-free graph. We provide evidence for this conjecture by considering trees, cycles, the cube graph, and bipartite graphs with degrees bounded by <em>k</em> on one side, obtaining in all the cases similar bounds as in the non-induced setting. Our results also have applications to the Erdős-Hajnal conjecture, the problem of finding induced <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free subgraphs with large degree and bounding the average degree of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span>-free graphs which do not contain induced subdivisions of a fixed graph.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"172 \",\"pages\":\"Pages 168-197\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000024\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000024","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

著名的Kővári-Sós-Turán定理指出,任何不包含完全二部图Ks,s副本的n顶点图最多有Os(n2−1/s)条边。近二十年来,由于在离散几何和结构图理论中的应用,许多结果表明,如果图满足一定的结构限制,则该界可以得到很大的改进。我们对这一现象进行了系统的研究,并提出了一个猜想,即如果H是二部图,则诱导出的无H图和无k,s图不能比无H图有更多的边。我们通过考虑树、环、立方体图和二部图来证明这一猜想,在所有情况下都得到了与非诱导设置相似的界。我们的结果也适用于Erdős-Hajnal猜想、寻找大程度的诱导无c4子图的问题以及不包含固定图的诱导细分的Ks,s-free图的平均度的边界问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kővári-Sós-Turán theorem for hereditary families
The celebrated Kővári-Sós-Turán theorem states that any n-vertex graph containing no copy of the complete bipartite graph Ks,s has at most Os(n21/s) edges. In the past two decades, motivated by the applications in discrete geometry and structural graph theory, a number of results demonstrated that this bound can be greatly improved if the graph satisfies certain structural restrictions. We propose the systematic study of this phenomenon, and state the conjecture that if H is a bipartite graph, then an induced H-free and Ks,s-free graph cannot have much more edges than an H-free graph. We provide evidence for this conjecture by considering trees, cycles, the cube graph, and bipartite graphs with degrees bounded by k on one side, obtaining in all the cases similar bounds as in the non-induced setting. Our results also have applications to the Erdős-Hajnal conjecture, the problem of finding induced C4-free subgraphs with large degree and bounding the average degree of Ks,s-free graphs which do not contain induced subdivisions of a fixed graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信