有向奇环的半积分Erdős-Pósa定理

IF 1.2 1区 数学 Q1 MATHEMATICS
Ken-ichi Kawarabayashi , Stephan Kreutzer , O-joung Kwon , Qiqin Xie
{"title":"有向奇环的半积分Erdős-Pósa定理","authors":"Ken-ichi Kawarabayashi ,&nbsp;Stephan Kreutzer ,&nbsp;O-joung Kwon ,&nbsp;Qiqin Xie","doi":"10.1016/j.jctb.2024.12.008","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that there exists a function <span><math><mi>f</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>R</mi></math></span> such that every directed graph <em>G</em> contains either <em>k</em> directed odd cycles where every vertex of <em>G</em> is contained in at most two of them, or a set of at most <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> vertices meeting all directed odd cycles. We give a polynomial-time algorithm for fixed <em>k</em> which outputs one of the two outcomes. This extends the half-integral Erdős-Pósa theorem for undirected odd cycles by Reed [Combinatorica 1999] to directed graphs.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 115-145"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A half-integral Erdős-Pósa theorem for directed odd cycles\",\"authors\":\"Ken-ichi Kawarabayashi ,&nbsp;Stephan Kreutzer ,&nbsp;O-joung Kwon ,&nbsp;Qiqin Xie\",\"doi\":\"10.1016/j.jctb.2024.12.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that there exists a function <span><math><mi>f</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>R</mi></math></span> such that every directed graph <em>G</em> contains either <em>k</em> directed odd cycles where every vertex of <em>G</em> is contained in at most two of them, or a set of at most <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> vertices meeting all directed odd cycles. We give a polynomial-time algorithm for fixed <em>k</em> which outputs one of the two outcomes. This extends the half-integral Erdős-Pósa theorem for undirected odd cycles by Reed [Combinatorica 1999] to directed graphs.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"172 \",\"pages\":\"Pages 115-145\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624001059\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624001059","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了存在一个函数f:N→R,使得每个有向图G包含k个有向奇环,其中G的每个顶点最多包含在其中两个有向奇环中,或者是一个最多包含f(k)个顶点满足所有有向奇环的集合。我们给出了一个固定k的多项式时间算法,它输出两个结果中的一个。这将Reed [Combinatorica 1999]关于无向奇环的半积分Erdős-Pósa定理推广到有向图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A half-integral Erdős-Pósa theorem for directed odd cycles
We prove that there exists a function f:NR such that every directed graph G contains either k directed odd cycles where every vertex of G is contained in at most two of them, or a set of at most f(k) vertices meeting all directed odd cycles. We give a polynomial-time algorithm for fixed k which outputs one of the two outcomes. This extends the half-integral Erdős-Pósa theorem for undirected odd cycles by Reed [Combinatorica 1999] to directed graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信