阿哈罗尼的彩虹循环猜想支持一个加性常数

IF 1.2 1区 数学 Q1 MATHEMATICS
Patrick Hompe, Tony Huynh
{"title":"阿哈罗尼的彩虹循环猜想支持一个加性常数","authors":"Patrick Hompe,&nbsp;Tony Huynh","doi":"10.1016/j.jctb.2024.12.004","DOIUrl":null,"url":null,"abstract":"<div><div>In 2017, Aharoni proposed the following generalization of the Caccetta-Häggkvist conjecture: if <em>G</em> is a simple <em>n</em>-vertex edge-colored graph with <em>n</em> color classes of size at least <em>r</em>, then <em>G</em> contains a rainbow cycle of length at most <span><math><mo>⌈</mo><mi>n</mi><mo>/</mo><mi>r</mi><mo>⌉</mo></math></span>.</div><div>In this paper, we prove that, for fixed <em>r</em>, Aharoni's conjecture holds up to an additive constant. Specifically, we show that for each fixed <span><math><mi>r</mi><mo>⩾</mo><mn>1</mn></math></span>, there exists a constant <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>∈</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>5</mn></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>r</mi><mo>)</mo></math></span> such that if <em>G</em> is a simple <em>n</em>-vertex edge-colored graph with <em>n</em> color classes of size at least <em>r</em>, then <em>G</em> contains a rainbow cycle of length at most <span><math><mi>n</mi><mo>/</mo><mi>r</mi><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"172 ","pages":"Pages 80-93"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aharoni's rainbow cycle conjecture holds up to an additive constant\",\"authors\":\"Patrick Hompe,&nbsp;Tony Huynh\",\"doi\":\"10.1016/j.jctb.2024.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In 2017, Aharoni proposed the following generalization of the Caccetta-Häggkvist conjecture: if <em>G</em> is a simple <em>n</em>-vertex edge-colored graph with <em>n</em> color classes of size at least <em>r</em>, then <em>G</em> contains a rainbow cycle of length at most <span><math><mo>⌈</mo><mi>n</mi><mo>/</mo><mi>r</mi><mo>⌉</mo></math></span>.</div><div>In this paper, we prove that, for fixed <em>r</em>, Aharoni's conjecture holds up to an additive constant. Specifically, we show that for each fixed <span><math><mi>r</mi><mo>⩾</mo><mn>1</mn></math></span>, there exists a constant <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>∈</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>r</mi></mrow><mrow><mn>5</mn></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>⁡</mo><mi>r</mi><mo>)</mo></math></span> such that if <em>G</em> is a simple <em>n</em>-vertex edge-colored graph with <em>n</em> color classes of size at least <em>r</em>, then <em>G</em> contains a rainbow cycle of length at most <span><math><mi>n</mi><mo>/</mo><mi>r</mi><mo>+</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"172 \",\"pages\":\"Pages 80-93\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624001011\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624001011","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

2017年,爱提出以下概括Caccetta-Haggkvist猜想:如果G是一个简单的n点edge-colored图与n颜色类别的大小至少r,然后G包含一个彩虹的循环长度最多⌈n / r⌉。在本文中,我们证明了对于固定的r, Aharoni猜想成立于一个可加常数。具体地说,我们表明,对于每个固定的r大于或等于1,存在一个常数αr∈O(r5log2 (r)),使得如果G是一个简单的n顶点边彩色图,具有大小至少为r的n个颜色类别,那么G包含长度最多为n/r+αr的彩虹循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aharoni's rainbow cycle conjecture holds up to an additive constant
In 2017, Aharoni proposed the following generalization of the Caccetta-Häggkvist conjecture: if G is a simple n-vertex edge-colored graph with n color classes of size at least r, then G contains a rainbow cycle of length at most n/r.
In this paper, we prove that, for fixed r, Aharoni's conjecture holds up to an additive constant. Specifically, we show that for each fixed r1, there exists a constant αrO(r5log2r) such that if G is a simple n-vertex edge-colored graph with n color classes of size at least r, then G contains a rainbow cycle of length at most n/r+αr.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信