拓扑量子材料中电子序的相互作用

IF 5.7 Q2 CHEMISTRY, PHYSICAL
Christian Stefan Gruber*,  and , Mahmoud Abdel-Hafiez*, 
{"title":"拓扑量子材料中电子序的相互作用","authors":"Christian Stefan Gruber*,&nbsp; and ,&nbsp;Mahmoud Abdel-Hafiez*,&nbsp;","doi":"10.1021/acsmaterialsau.4c0011410.1021/acsmaterialsau.4c00114","DOIUrl":null,"url":null,"abstract":"<p >Topological quantum materials hold great promise for future technological applications. Their unique electronic properties, such as protected surface states and exotic quasi-particles, offer opportunities for designing novel electronic and spintronics devices and allow quantum information processing. The origin of the interplay between various electronic orders in topological quantum materials, such as superconductivity and magnetism, remains unclear, particularly whether these electronic orders cooperate, compete, or simply coexist. Since the 2000s, the combination of topology and matter has sparked a tremendous surge of interest among theoreticians and experimentalists alike. Novel theoretical descriptions and predictions as well as complex experimental setups confirming or refuting these theories continuously appear in renowned journals. This review aims to provide conceptual tools to understand the fundamental concepts of this ever-growing field. Superconductivity and its historical development will serve as a second pillar alongside topological materials. While the main focus of this review is topological materials such as topological insulators and semimetals, topological superconductors will be explained phenomenologically.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 1","pages":"72–87 72–87"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.4c00114","citationCount":"0","resultStr":"{\"title\":\"Interplay of Electronic Orders in Topological Quantum Materials\",\"authors\":\"Christian Stefan Gruber*,&nbsp; and ,&nbsp;Mahmoud Abdel-Hafiez*,&nbsp;\",\"doi\":\"10.1021/acsmaterialsau.4c0011410.1021/acsmaterialsau.4c00114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Topological quantum materials hold great promise for future technological applications. Their unique electronic properties, such as protected surface states and exotic quasi-particles, offer opportunities for designing novel electronic and spintronics devices and allow quantum information processing. The origin of the interplay between various electronic orders in topological quantum materials, such as superconductivity and magnetism, remains unclear, particularly whether these electronic orders cooperate, compete, or simply coexist. Since the 2000s, the combination of topology and matter has sparked a tremendous surge of interest among theoreticians and experimentalists alike. Novel theoretical descriptions and predictions as well as complex experimental setups confirming or refuting these theories continuously appear in renowned journals. This review aims to provide conceptual tools to understand the fundamental concepts of this ever-growing field. Superconductivity and its historical development will serve as a second pillar alongside topological materials. While the main focus of this review is topological materials such as topological insulators and semimetals, topological superconductors will be explained phenomenologically.</p>\",\"PeriodicalId\":29798,\"journal\":{\"name\":\"ACS Materials Au\",\"volume\":\"5 1\",\"pages\":\"72–87 72–87\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.4c00114\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

拓扑量子材料在未来的技术应用中具有很大的前景。它们独特的电子特性,如受保护的表面态和外来的准粒子,为设计新型电子和自旋电子学设备提供了机会,并允许量子信息处理。拓扑量子材料中各种电子秩序之间相互作用的起源,如超导性和磁性,仍然不清楚,特别是这些电子秩序是合作,竞争还是简单共存。自2000年代以来,拓扑学和物质的结合引起了理论家和实验家的极大兴趣。新的理论描述和预测,以及复杂的实验设置,证实或反驳这些理论不断出现在知名期刊上。这篇综述的目的是提供概念性的工具来理解这个不断发展的领域的基本概念。超导及其历史发展将成为继拓扑材料之后的第二大支柱。虽然本综述的主要焦点是拓扑材料,如拓扑绝缘体和半金属,但拓扑超导体将从现象学上解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interplay of Electronic Orders in Topological Quantum Materials

Topological quantum materials hold great promise for future technological applications. Their unique electronic properties, such as protected surface states and exotic quasi-particles, offer opportunities for designing novel electronic and spintronics devices and allow quantum information processing. The origin of the interplay between various electronic orders in topological quantum materials, such as superconductivity and magnetism, remains unclear, particularly whether these electronic orders cooperate, compete, or simply coexist. Since the 2000s, the combination of topology and matter has sparked a tremendous surge of interest among theoreticians and experimentalists alike. Novel theoretical descriptions and predictions as well as complex experimental setups confirming or refuting these theories continuously appear in renowned journals. This review aims to provide conceptual tools to understand the fundamental concepts of this ever-growing field. Superconductivity and its historical development will serve as a second pillar alongside topological materials. While the main focus of this review is topological materials such as topological insulators and semimetals, topological superconductors will be explained phenomenologically.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信