高度倒置尖晶石ZnGa2O4纳米片的增强发光和光催化活性

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Somayeh Rafiezadeh, Curtis Irvine, Amar K. Salih, Maedehsadat Mousavi, Matthew R. Phillips, Mohammad B. Ghasemian* and Cuong Ton-That*, 
{"title":"高度倒置尖晶石ZnGa2O4纳米片的增强发光和光催化活性","authors":"Somayeh Rafiezadeh,&nbsp;Curtis Irvine,&nbsp;Amar K. Salih,&nbsp;Maedehsadat Mousavi,&nbsp;Matthew R. Phillips,&nbsp;Mohammad B. Ghasemian* and Cuong Ton-That*,&nbsp;","doi":"10.1021/acsanm.4c0578210.1021/acsanm.4c05782","DOIUrl":null,"url":null,"abstract":"<p >Zinc gallate (ZnGa<sub>2</sub>O<sub>4</sub>) has recently emerged as a promising wide-band-gap material for light-emitting and power electronic devices. This study investigates the impact of cation site inversion on the luminescence and photocatalytic properties of ZnGa<sub>2</sub>O<sub>4</sub>. High-quality nanoplates of ZnGa<sub>2</sub>O<sub>4</sub> with pure spinel phase, lateral dimensions up to 10 μm, and thicknesses around 40 nm are synthesized via hydrothermal reaction. Photoemission and Raman spectroscopies reveal significant cation inversion, where Ga<sup>3+</sup> ions occupy tetrahedral sites (Ga<sub>Zn</sub>) and Zn<sup>2+</sup> ions occupy octahedral sites (Zn<sub>Ga</sub>), forming antisite defects. The cation inversion parameters are measured as 0.36 ± 0.04 for Ga<sub>Zn</sub> and 0.25 ± 0.02 for Zn<sub>Ga</sub>. The nanoplates exhibit stable, bright broad-band luminescence featuring an ultraviolet (UV) band at 3.2 eV associated with self-trapped holes and three visible bands attributed to defects. Furthermore, the ZnGa<sub>2</sub>O<sub>4</sub> nanoplates demonstrate superior photocatalytic efficiency in degrading Rhodamine B (RhB) under ultraviolet A (UVA) irradiation compared to Ga<sub>2</sub>O<sub>3</sub>. Band structure analysis reveals strong tail states extending the valence and conduction band edges of Ga<sub>2</sub>O<sub>3</sub>, reducing the band gap to 3.9 eV, and facilitating hydroxyl radical production for enhanced photocatalysis.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 2","pages":"1033–1041 1033–1041"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Luminescence and Photocatalytic Activity in Highly Inverted Spinel ZnGa2O4 Nanoplates\",\"authors\":\"Somayeh Rafiezadeh,&nbsp;Curtis Irvine,&nbsp;Amar K. Salih,&nbsp;Maedehsadat Mousavi,&nbsp;Matthew R. Phillips,&nbsp;Mohammad B. Ghasemian* and Cuong Ton-That*,&nbsp;\",\"doi\":\"10.1021/acsanm.4c0578210.1021/acsanm.4c05782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Zinc gallate (ZnGa<sub>2</sub>O<sub>4</sub>) has recently emerged as a promising wide-band-gap material for light-emitting and power electronic devices. This study investigates the impact of cation site inversion on the luminescence and photocatalytic properties of ZnGa<sub>2</sub>O<sub>4</sub>. High-quality nanoplates of ZnGa<sub>2</sub>O<sub>4</sub> with pure spinel phase, lateral dimensions up to 10 μm, and thicknesses around 40 nm are synthesized via hydrothermal reaction. Photoemission and Raman spectroscopies reveal significant cation inversion, where Ga<sup>3+</sup> ions occupy tetrahedral sites (Ga<sub>Zn</sub>) and Zn<sup>2+</sup> ions occupy octahedral sites (Zn<sub>Ga</sub>), forming antisite defects. The cation inversion parameters are measured as 0.36 ± 0.04 for Ga<sub>Zn</sub> and 0.25 ± 0.02 for Zn<sub>Ga</sub>. The nanoplates exhibit stable, bright broad-band luminescence featuring an ultraviolet (UV) band at 3.2 eV associated with self-trapped holes and three visible bands attributed to defects. Furthermore, the ZnGa<sub>2</sub>O<sub>4</sub> nanoplates demonstrate superior photocatalytic efficiency in degrading Rhodamine B (RhB) under ultraviolet A (UVA) irradiation compared to Ga<sub>2</sub>O<sub>3</sub>. Band structure analysis reveals strong tail states extending the valence and conduction band edges of Ga<sub>2</sub>O<sub>3</sub>, reducing the band gap to 3.9 eV, and facilitating hydroxyl radical production for enhanced photocatalysis.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 2\",\"pages\":\"1033–1041 1033–1041\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c05782\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c05782","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

没食子酸锌(ZnGa2O4)近年来作为一种很有前途的宽带隙材料出现在发光和电力电子器件中。本文研究了阳离子位反转对ZnGa2O4发光和光催化性能的影响。采用水热法合成了具有纯尖晶石相、横向尺寸可达10 μm、厚度约40 nm的高质量ZnGa2O4纳米板。光发射和拉曼光谱显示了明显的阳离子反转,其中Ga3+离子占据了四面体位点(GaZn), Zn2+离子占据了八面体位点(ZnGa),形成了对位缺陷。阳离子转化参数测定结果表明,GaZn为0.36±0.04,zga为0.25±0.02。纳米板表现出稳定、明亮的宽带发光,具有3.2 eV的紫外(UV)带与自困空穴相关,以及归因于缺陷的三个可见带。此外,与Ga2O3相比,ZnGa2O4纳米片在紫外A (UVA)照射下对罗丹明B (RhB)的光催化效率更高。带结构分析表明,强尾态延长了Ga2O3的价带和导带边缘,将带隙减小到3.9 eV,有利于羟基自由基的产生,从而增强了光催化作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Luminescence and Photocatalytic Activity in Highly Inverted Spinel ZnGa2O4 Nanoplates

Enhanced Luminescence and Photocatalytic Activity in Highly Inverted Spinel ZnGa2O4 Nanoplates

Zinc gallate (ZnGa2O4) has recently emerged as a promising wide-band-gap material for light-emitting and power electronic devices. This study investigates the impact of cation site inversion on the luminescence and photocatalytic properties of ZnGa2O4. High-quality nanoplates of ZnGa2O4 with pure spinel phase, lateral dimensions up to 10 μm, and thicknesses around 40 nm are synthesized via hydrothermal reaction. Photoemission and Raman spectroscopies reveal significant cation inversion, where Ga3+ ions occupy tetrahedral sites (GaZn) and Zn2+ ions occupy octahedral sites (ZnGa), forming antisite defects. The cation inversion parameters are measured as 0.36 ± 0.04 for GaZn and 0.25 ± 0.02 for ZnGa. The nanoplates exhibit stable, bright broad-band luminescence featuring an ultraviolet (UV) band at 3.2 eV associated with self-trapped holes and three visible bands attributed to defects. Furthermore, the ZnGa2O4 nanoplates demonstrate superior photocatalytic efficiency in degrading Rhodamine B (RhB) under ultraviolet A (UVA) irradiation compared to Ga2O3. Band structure analysis reveals strong tail states extending the valence and conduction band edges of Ga2O3, reducing the band gap to 3.9 eV, and facilitating hydroxyl radical production for enhanced photocatalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信