掺杂与复合形成对可持续能源用g-C3N4电化学OER性能的协同效应研究

IF 5.3 3区 工程技术 Q2 ENERGY & FUELS
Reena Saini, Umar Farooq* and Faisal Imam, 
{"title":"掺杂与复合形成对可持续能源用g-C3N4电化学OER性能的协同效应研究","authors":"Reena Saini,&nbsp;Umar Farooq* and Faisal Imam,&nbsp;","doi":"10.1021/acs.energyfuels.4c0487510.1021/acs.energyfuels.4c04875","DOIUrl":null,"url":null,"abstract":"<p >For sustainable energy generation, the OER half-cell reaction is an important electrochemical process. In this research article, we have successfully synthesized cost-effective pure g-C<sub>3</sub>N<sub>4</sub>, g-C<sub>3</sub>N<sub>4</sub>/Cu<sub>2</sub>O, and g-C<sub>3</sub>N<sub>4</sub>/Co-doped Cu<sub>2</sub>O composite materials using a simple chemical mixing and annealing approach to investigate their electrocatalytic OER performance. All of the synthesized samples were characterized using XRD, FESEM, TEM, BET, XPS, and UV–visible DRS techniques. XRD analysis revealed successful synthesis of the pure g-C<sub>3</sub>N<sub>4</sub> and composite samples, while FESEM and TEM analyses showed successful deposition of a sheet-like g-C<sub>3</sub>N<sub>4</sub> sample on Cu<sub>2</sub>O and Co-doped Cu<sub>2</sub>O samples. The band gap of the composite sample (g-C<sub>3</sub>N<sub>4</sub>/Co doped Cu<sub>2</sub>O) increased to 2.9 eV as compared to pure g-C<sub>3</sub>N<sub>4</sub> having a band gap of 2.7 eV. Electrochemical OER activity investigations have shown enhancement in OER current density (18 mA/cm<sup>2</sup>) in the g-C<sub>3</sub>N<sub>4</sub>/Co-doped Cu<sub>2</sub>O sample compared to the pure g-C<sub>3</sub>N<sub>4</sub> sample (current density 0.5 mA/cm<sup>2</sup>). The enhanced OER activity of the g-C<sub>3</sub>N<sub>4</sub>/Co-doped Cu<sub>2</sub>O sample was attributed to a low Tafel slope (119 mV/dec), confirming the fast reaction kinetics and enhanced charge transfer ability of g-C<sub>3</sub>N<sub>4</sub>/Co-doped Cu<sub>2</sub>O as compared to the pure g-C<sub>3</sub>N<sub>4</sub> electrode. Chronoamperometric stability investigation of g-C<sub>3</sub>N<sub>4</sub>/Co-doped Cu<sub>2</sub>O confirms the stable current density for 10 h. Hence, this report shows the synergistic effect of doping and composite formation on electrochemical OER activity.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 2","pages":"1327–1340 1327–1340"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Synergistic Effect of Doping and Composite Formation on Electrochemical OER Performance of g-C3N4 for Sustainable Energy\",\"authors\":\"Reena Saini,&nbsp;Umar Farooq* and Faisal Imam,&nbsp;\",\"doi\":\"10.1021/acs.energyfuels.4c0487510.1021/acs.energyfuels.4c04875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >For sustainable energy generation, the OER half-cell reaction is an important electrochemical process. In this research article, we have successfully synthesized cost-effective pure g-C<sub>3</sub>N<sub>4</sub>, g-C<sub>3</sub>N<sub>4</sub>/Cu<sub>2</sub>O, and g-C<sub>3</sub>N<sub>4</sub>/Co-doped Cu<sub>2</sub>O composite materials using a simple chemical mixing and annealing approach to investigate their electrocatalytic OER performance. All of the synthesized samples were characterized using XRD, FESEM, TEM, BET, XPS, and UV–visible DRS techniques. XRD analysis revealed successful synthesis of the pure g-C<sub>3</sub>N<sub>4</sub> and composite samples, while FESEM and TEM analyses showed successful deposition of a sheet-like g-C<sub>3</sub>N<sub>4</sub> sample on Cu<sub>2</sub>O and Co-doped Cu<sub>2</sub>O samples. The band gap of the composite sample (g-C<sub>3</sub>N<sub>4</sub>/Co doped Cu<sub>2</sub>O) increased to 2.9 eV as compared to pure g-C<sub>3</sub>N<sub>4</sub> having a band gap of 2.7 eV. Electrochemical OER activity investigations have shown enhancement in OER current density (18 mA/cm<sup>2</sup>) in the g-C<sub>3</sub>N<sub>4</sub>/Co-doped Cu<sub>2</sub>O sample compared to the pure g-C<sub>3</sub>N<sub>4</sub> sample (current density 0.5 mA/cm<sup>2</sup>). The enhanced OER activity of the g-C<sub>3</sub>N<sub>4</sub>/Co-doped Cu<sub>2</sub>O sample was attributed to a low Tafel slope (119 mV/dec), confirming the fast reaction kinetics and enhanced charge transfer ability of g-C<sub>3</sub>N<sub>4</sub>/Co-doped Cu<sub>2</sub>O as compared to the pure g-C<sub>3</sub>N<sub>4</sub> electrode. Chronoamperometric stability investigation of g-C<sub>3</sub>N<sub>4</sub>/Co-doped Cu<sub>2</sub>O confirms the stable current density for 10 h. Hence, this report shows the synergistic effect of doping and composite formation on electrochemical OER activity.</p>\",\"PeriodicalId\":35,\"journal\":{\"name\":\"Energy & Fuels\",\"volume\":\"39 2\",\"pages\":\"1327–1340 1327–1340\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Fuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c04875\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c04875","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在可持续能源生产中,OER半电池反应是一个重要的电化学过程。在本研究中,我们利用简单的化学混合和退火方法成功合成了具有成本效益的纯g-C3N4、g-C3N4/Cu2O和g-C3N4/共掺杂Cu2O复合材料,并研究了它们的电催化OER性能。采用XRD、FESEM、TEM、BET、XPS、uv -可见DRS等技术对合成的样品进行了表征。XRD分析结果表明,g-C3N4纯样品和复合样品成功合成,FESEM和TEM分析结果表明,在Cu2O和共掺杂Cu2O样品上成功沉积了片状g-C3N4样品。复合样品(g-C3N4/Co掺杂Cu2O)的带隙增加到2.9 eV,而纯g-C3N4的带隙为2.7 eV。电化学OER活性研究表明,与纯g-C3N4样品(电流密度0.5 mA/cm2)相比,g-C3N4/共掺杂Cu2O样品的OER电流密度(18 mA/cm2)有所提高。g-C3N4/共掺杂Cu2O样品的OER活性增强归因于较低的Tafel斜率(119 mV/dec),证实了与纯g-C3N4电极相比,g-C3N4/共掺杂Cu2O具有快速的反应动力学和增强的电荷转移能力。g-C3N4/共掺杂Cu2O的时序安培稳定性研究证实了10 h的稳定电流密度。因此,本报告显示了掺杂和复合形成对电化学OER活性的协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation of the Synergistic Effect of Doping and Composite Formation on Electrochemical OER Performance of g-C3N4 for Sustainable Energy

Investigation of the Synergistic Effect of Doping and Composite Formation on Electrochemical OER Performance of g-C3N4 for Sustainable Energy

For sustainable energy generation, the OER half-cell reaction is an important electrochemical process. In this research article, we have successfully synthesized cost-effective pure g-C3N4, g-C3N4/Cu2O, and g-C3N4/Co-doped Cu2O composite materials using a simple chemical mixing and annealing approach to investigate their electrocatalytic OER performance. All of the synthesized samples were characterized using XRD, FESEM, TEM, BET, XPS, and UV–visible DRS techniques. XRD analysis revealed successful synthesis of the pure g-C3N4 and composite samples, while FESEM and TEM analyses showed successful deposition of a sheet-like g-C3N4 sample on Cu2O and Co-doped Cu2O samples. The band gap of the composite sample (g-C3N4/Co doped Cu2O) increased to 2.9 eV as compared to pure g-C3N4 having a band gap of 2.7 eV. Electrochemical OER activity investigations have shown enhancement in OER current density (18 mA/cm2) in the g-C3N4/Co-doped Cu2O sample compared to the pure g-C3N4 sample (current density 0.5 mA/cm2). The enhanced OER activity of the g-C3N4/Co-doped Cu2O sample was attributed to a low Tafel slope (119 mV/dec), confirming the fast reaction kinetics and enhanced charge transfer ability of g-C3N4/Co-doped Cu2O as compared to the pure g-C3N4 electrode. Chronoamperometric stability investigation of g-C3N4/Co-doped Cu2O confirms the stable current density for 10 h. Hence, this report shows the synergistic effect of doping and composite formation on electrochemical OER activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信