通过缺陷碳基质优化LiNO3转化,作为高耐用和快速充电锂金属电池的催化集流器

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qicheng Zhang, Jing Zhang, Xinyang Yue, Xiaoya He, Min Wang, Lei Xu, Wei Gao, Mingming Fang*, Juntao Ren* and Zheng Liang*, 
{"title":"通过缺陷碳基质优化LiNO3转化,作为高耐用和快速充电锂金属电池的催化集流器","authors":"Qicheng Zhang,&nbsp;Jing Zhang,&nbsp;Xinyang Yue,&nbsp;Xiaoya He,&nbsp;Min Wang,&nbsp;Lei Xu,&nbsp;Wei Gao,&nbsp;Mingming Fang*,&nbsp;Juntao Ren* and Zheng Liang*,&nbsp;","doi":"10.1021/acs.nanolett.4c0505810.1021/acs.nanolett.4c05058","DOIUrl":null,"url":null,"abstract":"<p >Lithium nitrate (LiNO<sub>3</sub>) stands as an effective electrolyte additive, mitigating the degradation of Li metal anodes by forming a Li<sub>3</sub>N-rich solid electrolyte interphase (SEI). However, its conversion kinetics are impeded by energy-consuming eight-electron transfer reactions. Herein, an isoreticular metal–organic framework-8-derived carbon is incorporated into the carbon cloth (RMCC) as a catalytic current collector to regulate the LiNO<sub>3</sub> conversion kinetics and boost Li<sub>3</sub>N generation inside the SEI. Our findings reveal that reducing LiNO to Li<sub>3</sub>N during LiNO<sub>3</sub> transformation occurs more favorably on the RMCC than on conventional substrates. The robust electrostatic attraction between LiNO and vacancy defects in the RMCC renders the chemical bonds of intermediate LiNO susceptible to cracking. Consequently, the RMCC-derived SEI exhibits effective Li dendrite restriction; the symmetric Li and LiFePO<sub>4</sub> full cells with prelithiated RMCC anodes demonstrate improved cycling stability without short-circuiting, outperforming their counterparts.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 4","pages":"1389–1396 1389–1396"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing LiNO3 Conversion through a Defective Carbon Matrix as Catalytic Current Collectors for Highly Durable and Fast-Charging Li Metal Batteries\",\"authors\":\"Qicheng Zhang,&nbsp;Jing Zhang,&nbsp;Xinyang Yue,&nbsp;Xiaoya He,&nbsp;Min Wang,&nbsp;Lei Xu,&nbsp;Wei Gao,&nbsp;Mingming Fang*,&nbsp;Juntao Ren* and Zheng Liang*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c0505810.1021/acs.nanolett.4c05058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Lithium nitrate (LiNO<sub>3</sub>) stands as an effective electrolyte additive, mitigating the degradation of Li metal anodes by forming a Li<sub>3</sub>N-rich solid electrolyte interphase (SEI). However, its conversion kinetics are impeded by energy-consuming eight-electron transfer reactions. Herein, an isoreticular metal–organic framework-8-derived carbon is incorporated into the carbon cloth (RMCC) as a catalytic current collector to regulate the LiNO<sub>3</sub> conversion kinetics and boost Li<sub>3</sub>N generation inside the SEI. Our findings reveal that reducing LiNO to Li<sub>3</sub>N during LiNO<sub>3</sub> transformation occurs more favorably on the RMCC than on conventional substrates. The robust electrostatic attraction between LiNO and vacancy defects in the RMCC renders the chemical bonds of intermediate LiNO susceptible to cracking. Consequently, the RMCC-derived SEI exhibits effective Li dendrite restriction; the symmetric Li and LiFePO<sub>4</sub> full cells with prelithiated RMCC anodes demonstrate improved cycling stability without short-circuiting, outperforming their counterparts.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 4\",\"pages\":\"1389–1396 1389–1396\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05058\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c05058","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硝酸锂(LiNO3)作为一种有效的电解质添加剂,通过形成富li3n的固体电解质界面(SEI)来减轻锂金属阳极的降解。然而,它的转化动力学受到耗能的八电子转移反应的阻碍。在此,将一种等晶格金属-有机骨架-8衍生碳纳入碳布(RMCC)中作为催化电流收集器,以调节LiNO3转化动力学并促进SEI内Li3N的生成。我们的研究结果表明,在LiNO3转化过程中,在RMCC上比在常规底物上更容易将LiNO还原为Li3N。在RMCC中,LiNO和空位缺陷之间强大的静电吸引力使得中间LiNO的化学键容易开裂。因此,rmcc衍生的SEI表现出有效的Li枝晶限制;具有预锂化RMCC阳极的对称锂和LiFePO4全电池表现出更好的循环稳定性,无短路,优于同类电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimizing LiNO3 Conversion through a Defective Carbon Matrix as Catalytic Current Collectors for Highly Durable and Fast-Charging Li Metal Batteries

Optimizing LiNO3 Conversion through a Defective Carbon Matrix as Catalytic Current Collectors for Highly Durable and Fast-Charging Li Metal Batteries

Lithium nitrate (LiNO3) stands as an effective electrolyte additive, mitigating the degradation of Li metal anodes by forming a Li3N-rich solid electrolyte interphase (SEI). However, its conversion kinetics are impeded by energy-consuming eight-electron transfer reactions. Herein, an isoreticular metal–organic framework-8-derived carbon is incorporated into the carbon cloth (RMCC) as a catalytic current collector to regulate the LiNO3 conversion kinetics and boost Li3N generation inside the SEI. Our findings reveal that reducing LiNO to Li3N during LiNO3 transformation occurs more favorably on the RMCC than on conventional substrates. The robust electrostatic attraction between LiNO and vacancy defects in the RMCC renders the chemical bonds of intermediate LiNO susceptible to cracking. Consequently, the RMCC-derived SEI exhibits effective Li dendrite restriction; the symmetric Li and LiFePO4 full cells with prelithiated RMCC anodes demonstrate improved cycling stability without short-circuiting, outperforming their counterparts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信