Sachin Jog, Juan D. Medrano-García, Daniel Vázquez and Gonzalo Guillén-Gosálbez*,
{"title":"化石燃料/可再生碳甲醇混合簇的多目标优化","authors":"Sachin Jog, Juan D. Medrano-García, Daniel Vázquez and Gonzalo Guillén-Gosálbez*, ","doi":"10.1021/acssuschemeng.4c0656610.1021/acssuschemeng.4c06566","DOIUrl":null,"url":null,"abstract":"<p >Replacing fossil carbon- with renewable carbon-based technologies is imperative for transitioning to sustainable chemical production. However, most production pathways based on renewable carbon are currently economically unappealing. Here, we show that hybrid clusters exploiting synergies between different fossil and renewable carbon-based processes in terms of heat, mass, and power integration could make defossilized chemical technologies more competitive. We consider an integrated carbon cluster based on fossil and renewable carbon feedstocks for methanol production, including a novel oxy-combustion cycle for purge gas treatment and power generation. Using multiobjective optimization considering economic and environmental criteria (i.e., unitary production cost and global warming potential (GWP) impact, respectively), we find that integrated clusters could reduce the cost of carbon-neutral methanol by up to 30%, while leading to reductions in GWP impact from 21 to 142% for a given unitary production cost target, and heating utility savings between 80 and 100%. We conclude that hybridization of fossil and renewable technologies could become instrumental in enabling a gradual shift toward sustainable chemical production pathways.</p><p >Mass, heat and power integration between chemical processes results in superior environmental performance, utility savings, and fossil/renewable carbon hybridization potential.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 4","pages":"1473–1483 1473–1483"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acssuschemeng.4c06566","citationCount":"0","resultStr":"{\"title\":\"Multi-Objective Optimization of a Hybrid Fossil/Renewable Carbon Methanol Cluster\",\"authors\":\"Sachin Jog, Juan D. Medrano-García, Daniel Vázquez and Gonzalo Guillén-Gosálbez*, \",\"doi\":\"10.1021/acssuschemeng.4c0656610.1021/acssuschemeng.4c06566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Replacing fossil carbon- with renewable carbon-based technologies is imperative for transitioning to sustainable chemical production. However, most production pathways based on renewable carbon are currently economically unappealing. Here, we show that hybrid clusters exploiting synergies between different fossil and renewable carbon-based processes in terms of heat, mass, and power integration could make defossilized chemical technologies more competitive. We consider an integrated carbon cluster based on fossil and renewable carbon feedstocks for methanol production, including a novel oxy-combustion cycle for purge gas treatment and power generation. Using multiobjective optimization considering economic and environmental criteria (i.e., unitary production cost and global warming potential (GWP) impact, respectively), we find that integrated clusters could reduce the cost of carbon-neutral methanol by up to 30%, while leading to reductions in GWP impact from 21 to 142% for a given unitary production cost target, and heating utility savings between 80 and 100%. We conclude that hybridization of fossil and renewable technologies could become instrumental in enabling a gradual shift toward sustainable chemical production pathways.</p><p >Mass, heat and power integration between chemical processes results in superior environmental performance, utility savings, and fossil/renewable carbon hybridization potential.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 4\",\"pages\":\"1473–1483 1473–1483\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acssuschemeng.4c06566\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c06566\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c06566","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi-Objective Optimization of a Hybrid Fossil/Renewable Carbon Methanol Cluster
Replacing fossil carbon- with renewable carbon-based technologies is imperative for transitioning to sustainable chemical production. However, most production pathways based on renewable carbon are currently economically unappealing. Here, we show that hybrid clusters exploiting synergies between different fossil and renewable carbon-based processes in terms of heat, mass, and power integration could make defossilized chemical technologies more competitive. We consider an integrated carbon cluster based on fossil and renewable carbon feedstocks for methanol production, including a novel oxy-combustion cycle for purge gas treatment and power generation. Using multiobjective optimization considering economic and environmental criteria (i.e., unitary production cost and global warming potential (GWP) impact, respectively), we find that integrated clusters could reduce the cost of carbon-neutral methanol by up to 30%, while leading to reductions in GWP impact from 21 to 142% for a given unitary production cost target, and heating utility savings between 80 and 100%. We conclude that hybridization of fossil and renewable technologies could become instrumental in enabling a gradual shift toward sustainable chemical production pathways.
Mass, heat and power integration between chemical processes results in superior environmental performance, utility savings, and fossil/renewable carbon hybridization potential.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.