{"title":"低强度脉冲超声响应支架通过超声、热和电刺激促进膜内和软骨内骨化","authors":"Wanru Jia, Tianlong Wang, Feng Chen*, Zhiqing Liu, Xiaodong Hou, Wentao Cao, Xinyu Zhao, Bingqiang Lu, Yan Hu, Yijie Dong, Jianqiao Zhou*, Zifei Zhou* and Weiwei Zhan*, ","doi":"10.1021/acsnano.4c1335710.1021/acsnano.4c13357","DOIUrl":null,"url":null,"abstract":"<p >Multiple physical stimuli are expected to produce a synergistic effect to promote bone tissue regeneration. Low-intensity pulsed ultrasound (LIPUS) has been clinically used in bone repair for the mechanical stimulation that it provides. In addition, LIPUS can also excite the biomaterials to generate other physical stimuli such as thermal or electrical stimuli. In this study, a scaffold based on decellularized adipose tissue (DAT) is established by incorporating polydopamine-modified multilayer black phosphorus nanosheets (pDA-mBP@DAT). Their effect on bone repair under LIPUS stimulation and the potential mechanisms are further investigated. This scaffold possesses piezoelectric properties and generates a mild thermogenic stimulus when stimulated by LIPUS. With superior properties, this scaffold is demonstrated to have good cytocompatibility in vitro and in vivo. Simultaneously, LIPUS promotes cell attachment, migration, and osteogenic differentiation in the pDA-mBP@DAT scaffold. Furthermore, the combined use of pDA-mBP@DAT and LIPUS significantly affects the regenerative effect in rat models of critical-sized calvarial defects. The possible mechanisms include promoting osteogenesis and neovascularization and activating the Piezo1. This study presents insight into speeding up bone regeneration by the synergistic combination of LIPUS and pDA-mBP@DAT scaffolds.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 4","pages":"4422–4439 4422–4439"},"PeriodicalIF":16.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Intensity Pulsed Ultrasound Responsive Scaffold Promotes Intramembranous and Endochondral Ossification via Ultrasonic, Thermal, and Electrical Stimulation\",\"authors\":\"Wanru Jia, Tianlong Wang, Feng Chen*, Zhiqing Liu, Xiaodong Hou, Wentao Cao, Xinyu Zhao, Bingqiang Lu, Yan Hu, Yijie Dong, Jianqiao Zhou*, Zifei Zhou* and Weiwei Zhan*, \",\"doi\":\"10.1021/acsnano.4c1335710.1021/acsnano.4c13357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Multiple physical stimuli are expected to produce a synergistic effect to promote bone tissue regeneration. Low-intensity pulsed ultrasound (LIPUS) has been clinically used in bone repair for the mechanical stimulation that it provides. In addition, LIPUS can also excite the biomaterials to generate other physical stimuli such as thermal or electrical stimuli. In this study, a scaffold based on decellularized adipose tissue (DAT) is established by incorporating polydopamine-modified multilayer black phosphorus nanosheets (pDA-mBP@DAT). Their effect on bone repair under LIPUS stimulation and the potential mechanisms are further investigated. This scaffold possesses piezoelectric properties and generates a mild thermogenic stimulus when stimulated by LIPUS. With superior properties, this scaffold is demonstrated to have good cytocompatibility in vitro and in vivo. Simultaneously, LIPUS promotes cell attachment, migration, and osteogenic differentiation in the pDA-mBP@DAT scaffold. Furthermore, the combined use of pDA-mBP@DAT and LIPUS significantly affects the regenerative effect in rat models of critical-sized calvarial defects. The possible mechanisms include promoting osteogenesis and neovascularization and activating the Piezo1. This study presents insight into speeding up bone regeneration by the synergistic combination of LIPUS and pDA-mBP@DAT scaffolds.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 4\",\"pages\":\"4422–4439 4422–4439\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c13357\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c13357","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Low-Intensity Pulsed Ultrasound Responsive Scaffold Promotes Intramembranous and Endochondral Ossification via Ultrasonic, Thermal, and Electrical Stimulation
Multiple physical stimuli are expected to produce a synergistic effect to promote bone tissue regeneration. Low-intensity pulsed ultrasound (LIPUS) has been clinically used in bone repair for the mechanical stimulation that it provides. In addition, LIPUS can also excite the biomaterials to generate other physical stimuli such as thermal or electrical stimuli. In this study, a scaffold based on decellularized adipose tissue (DAT) is established by incorporating polydopamine-modified multilayer black phosphorus nanosheets (pDA-mBP@DAT). Their effect on bone repair under LIPUS stimulation and the potential mechanisms are further investigated. This scaffold possesses piezoelectric properties and generates a mild thermogenic stimulus when stimulated by LIPUS. With superior properties, this scaffold is demonstrated to have good cytocompatibility in vitro and in vivo. Simultaneously, LIPUS promotes cell attachment, migration, and osteogenic differentiation in the pDA-mBP@DAT scaffold. Furthermore, the combined use of pDA-mBP@DAT and LIPUS significantly affects the regenerative effect in rat models of critical-sized calvarial defects. The possible mechanisms include promoting osteogenesis and neovascularization and activating the Piezo1. This study presents insight into speeding up bone regeneration by the synergistic combination of LIPUS and pDA-mBP@DAT scaffolds.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.