Mn-Mn二聚体诱导具有独特[Zn4PO12]链和[ZnOn]基团的Mn2+活化AZn4(PO4)3 (A = K, Rb和Cs)的多模发射体

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Qin Liu, Peipei Dang*, Guodong Zhang, Hongzhou Lian, Ziyong Cheng, Guogang Li* and Jun Lin*, 
{"title":"Mn-Mn二聚体诱导具有独特[Zn4PO12]链和[ZnOn]基团的Mn2+活化AZn4(PO4)3 (A = K, Rb和Cs)的多模发射体","authors":"Qin Liu,&nbsp;Peipei Dang*,&nbsp;Guodong Zhang,&nbsp;Hongzhou Lian,&nbsp;Ziyong Cheng,&nbsp;Guogang Li* and Jun Lin*,&nbsp;","doi":"10.1021/acs.inorgchem.4c0465610.1021/acs.inorgchem.4c04656","DOIUrl":null,"url":null,"abstract":"<p >Mn<sup>2+</sup>-doped luminescent materials play a significant role in a variety of fields, including modern lighting, displays, and imaging. Mn<sup>2+</sup> exhibits a broad and adjustable emission, hinging on the local environment of the crystal field and the interaction of the 3d<sup>5</sup> electrons. However, it is still a challenge to realize the precise control of the emission of Mn<sup>2+</sup> ions due to site-prior occupation in a specific lattice. Here, the formation of Mn–Mn dimers is proposed to be an effective strategy to design a novel red emission. Multimode emitters in Mn<sup>2+</sup>-activated AZn<sub>4</sub>(PO<sub>4</sub>)<sub>3</sub> (A = K, Rb, and Cs) with unique [Zn<sub>4</sub>PO<sub>12</sub>] chains and [ZnO<sub><i>n</i></sub>] groups are observed to achieve regular green and unusual red emissions. KZn<sub>4</sub>(PO<sub>4</sub>)<sub>3</sub>:Mn<sup>2+</sup> shows broad dual emissions at 542 and 608 nm, attributed to [MnO<sub>4</sub>] and [Mn<sub>2</sub>O<sub>7</sub>] dimers, respectively. While K is replaced with Rb and Cs, the Zn ions form [ZnO<sub>4</sub>] tetrahedra and [ZnO<sub>5</sub>] octahedra. RbZn<sub>4</sub>(PO<sub>4</sub>)<sub>3</sub>:Mn<sup>2+</sup> exhibits a broad red emission at 618 nm, ascribing to [Mn<sub>2</sub>O<sub>7</sub>] and [Mn<sub>2</sub>O<sub>8</sub>] dimers. CsZn<sub>4</sub>(PO<sub>4</sub>)<sub>3</sub>:Mn<sup>2+</sup> also displays a broad orange-red emission at 608–620 nm with increasing doping levels, deriving from energy transfer from [MnO<sub>5</sub>] to [Mn<sub>2</sub>O<sub>7</sub>] and [Mn<sub>2</sub>O<sub>8</sub>] dimers. This work provides a framework for creating novel red emissions from Mn<sup>2+</sup>-doped luminescent materials.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"64 4","pages":"1919–1929 1919–1929"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mn–Mn Dimers Induced Multimode Emitters in Mn2+-Activated AZn4(PO4)3 (A = K, Rb, and Cs) with Unique [Zn4PO12] Chains and [ZnOn] Groups\",\"authors\":\"Qin Liu,&nbsp;Peipei Dang*,&nbsp;Guodong Zhang,&nbsp;Hongzhou Lian,&nbsp;Ziyong Cheng,&nbsp;Guogang Li* and Jun Lin*,&nbsp;\",\"doi\":\"10.1021/acs.inorgchem.4c0465610.1021/acs.inorgchem.4c04656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Mn<sup>2+</sup>-doped luminescent materials play a significant role in a variety of fields, including modern lighting, displays, and imaging. Mn<sup>2+</sup> exhibits a broad and adjustable emission, hinging on the local environment of the crystal field and the interaction of the 3d<sup>5</sup> electrons. However, it is still a challenge to realize the precise control of the emission of Mn<sup>2+</sup> ions due to site-prior occupation in a specific lattice. Here, the formation of Mn–Mn dimers is proposed to be an effective strategy to design a novel red emission. Multimode emitters in Mn<sup>2+</sup>-activated AZn<sub>4</sub>(PO<sub>4</sub>)<sub>3</sub> (A = K, Rb, and Cs) with unique [Zn<sub>4</sub>PO<sub>12</sub>] chains and [ZnO<sub><i>n</i></sub>] groups are observed to achieve regular green and unusual red emissions. KZn<sub>4</sub>(PO<sub>4</sub>)<sub>3</sub>:Mn<sup>2+</sup> shows broad dual emissions at 542 and 608 nm, attributed to [MnO<sub>4</sub>] and [Mn<sub>2</sub>O<sub>7</sub>] dimers, respectively. While K is replaced with Rb and Cs, the Zn ions form [ZnO<sub>4</sub>] tetrahedra and [ZnO<sub>5</sub>] octahedra. RbZn<sub>4</sub>(PO<sub>4</sub>)<sub>3</sub>:Mn<sup>2+</sup> exhibits a broad red emission at 618 nm, ascribing to [Mn<sub>2</sub>O<sub>7</sub>] and [Mn<sub>2</sub>O<sub>8</sub>] dimers. CsZn<sub>4</sub>(PO<sub>4</sub>)<sub>3</sub>:Mn<sup>2+</sup> also displays a broad orange-red emission at 608–620 nm with increasing doping levels, deriving from energy transfer from [MnO<sub>5</sub>] to [Mn<sub>2</sub>O<sub>7</sub>] and [Mn<sub>2</sub>O<sub>8</sub>] dimers. This work provides a framework for creating novel red emissions from Mn<sup>2+</sup>-doped luminescent materials.</p>\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"64 4\",\"pages\":\"1919–1929 1919–1929\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c04656\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c04656","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

掺杂Mn2+的发光材料在包括现代照明、显示和成像在内的各个领域发挥着重要作用。Mn2+表现出宽而可调的发射,这取决于晶体场的局部环境和3d5电子的相互作用。然而,由于在特定晶格中的位置优先占据,实现对Mn2+离子发射的精确控制仍然是一个挑战。本文提出,形成Mn-Mn二聚体是设计新型红发射的有效策略。在Mn2+活化的AZn4(PO4)3 (A = K, Rb和Cs)中,具有独特的[Zn4PO12]链和[ZnOn]基团的多模发射体可以实现正常的绿色和不寻常的红色发射。KZn4(PO4)3:Mn2+在542和608 nm处显示出宽的双发射,分别归因于[MnO4]和[Mn2O7]二聚体。当K被Rb和Cs取代时,Zn离子形成[ZnO4]四面体和[ZnO5]八面体。RbZn4(PO4)3:Mn2+由于[Mn2O7]和[Mn2O8]二聚体的作用,在618 nm处表现出较宽的红光发射。随着掺杂水平的增加,CsZn4(PO4)3:Mn2+在608-620 nm处也显示出宽的橙红色发射,这是由于[MnO5]向[Mn2O7]和[Mn2O8]二聚体的能量转移所致。这项工作为从掺杂Mn2+的发光材料中产生新的红色发射提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mn–Mn Dimers Induced Multimode Emitters in Mn2+-Activated AZn4(PO4)3 (A = K, Rb, and Cs) with Unique [Zn4PO12] Chains and [ZnOn] Groups

Mn–Mn Dimers Induced Multimode Emitters in Mn2+-Activated AZn4(PO4)3 (A = K, Rb, and Cs) with Unique [Zn4PO12] Chains and [ZnOn] Groups

Mn2+-doped luminescent materials play a significant role in a variety of fields, including modern lighting, displays, and imaging. Mn2+ exhibits a broad and adjustable emission, hinging on the local environment of the crystal field and the interaction of the 3d5 electrons. However, it is still a challenge to realize the precise control of the emission of Mn2+ ions due to site-prior occupation in a specific lattice. Here, the formation of Mn–Mn dimers is proposed to be an effective strategy to design a novel red emission. Multimode emitters in Mn2+-activated AZn4(PO4)3 (A = K, Rb, and Cs) with unique [Zn4PO12] chains and [ZnOn] groups are observed to achieve regular green and unusual red emissions. KZn4(PO4)3:Mn2+ shows broad dual emissions at 542 and 608 nm, attributed to [MnO4] and [Mn2O7] dimers, respectively. While K is replaced with Rb and Cs, the Zn ions form [ZnO4] tetrahedra and [ZnO5] octahedra. RbZn4(PO4)3:Mn2+ exhibits a broad red emission at 618 nm, ascribing to [Mn2O7] and [Mn2O8] dimers. CsZn4(PO4)3:Mn2+ also displays a broad orange-red emission at 608–620 nm with increasing doping levels, deriving from energy transfer from [MnO5] to [Mn2O7] and [Mn2O8] dimers. This work provides a framework for creating novel red emissions from Mn2+-doped luminescent materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信