用卤化物固态电解质构建更好的全固态锂离子电池

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chao Li,  and , Yaping Du*, 
{"title":"用卤化物固态电解质构建更好的全固态锂离子电池","authors":"Chao Li,&nbsp; and ,&nbsp;Yaping Du*,&nbsp;","doi":"10.1021/acsnano.4c1500510.1021/acsnano.4c15005","DOIUrl":null,"url":null,"abstract":"<p >Since the electrochemical potential of lithium metal was systematically elaborated and measured in the early 19th century, lithium-ion batteries with liquid organic electrolyte have been a key energy storage device and successfully commercialized at the end of the 20th century. Although lithium-ion battery technology has progressed enormously in recent years, it still suffers from two core issues, intrinsic safety hazard and low energy density. Within approaches to address the core challenges, the development of all-solid-state lithium-ion batteries (ASSLBs) based on halide solid-state electrolytes (SSEs) has displayed potential for application in stationary energy storage devices and may eventually become an essential component of a future smart grid. In this Review, we categorize and summarize the current research status of halide SSEs based on different halogen anions from the perspective of halogen chemistry, upon which we summarize the different synthetic routes of halide SSEs possessing high room-temperature ionic conductivity, and compare in detail the performance of halide SSEs based on different halogen anions in terms of ionic conductivity, activation energy, electronic conductivity, interfacial contact stability, and electrochemical window and summarize the corresponding optimization strategies for each of the above-mentioned electrochemical indicators. Finally, we provide an outlook on the unresolved challenges and future opportunities of ASSLBs.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 4","pages":"4121–4155 4121–4155"},"PeriodicalIF":16.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building a Better All-Solid-State Lithium-Ion Battery with Halide Solid-State Electrolyte\",\"authors\":\"Chao Li,&nbsp; and ,&nbsp;Yaping Du*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c1500510.1021/acsnano.4c15005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Since the electrochemical potential of lithium metal was systematically elaborated and measured in the early 19th century, lithium-ion batteries with liquid organic electrolyte have been a key energy storage device and successfully commercialized at the end of the 20th century. Although lithium-ion battery technology has progressed enormously in recent years, it still suffers from two core issues, intrinsic safety hazard and low energy density. Within approaches to address the core challenges, the development of all-solid-state lithium-ion batteries (ASSLBs) based on halide solid-state electrolytes (SSEs) has displayed potential for application in stationary energy storage devices and may eventually become an essential component of a future smart grid. In this Review, we categorize and summarize the current research status of halide SSEs based on different halogen anions from the perspective of halogen chemistry, upon which we summarize the different synthetic routes of halide SSEs possessing high room-temperature ionic conductivity, and compare in detail the performance of halide SSEs based on different halogen anions in terms of ionic conductivity, activation energy, electronic conductivity, interfacial contact stability, and electrochemical window and summarize the corresponding optimization strategies for each of the above-mentioned electrochemical indicators. Finally, we provide an outlook on the unresolved challenges and future opportunities of ASSLBs.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 4\",\"pages\":\"4121–4155 4121–4155\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c15005\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c15005","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自19世纪初对金属锂的电化学电位进行系统阐述和测量以来,采用液态有机电解质的锂离子电池已成为关键的储能装置,并于20世纪末成功商业化。尽管近年来锂离子电池技术取得了巨大的进步,但它仍然存在固有安全隐患和能量密度低两个核心问题。在解决核心挑战的方法中,基于卤化物固态电解质(sse)的全固态锂离子电池(ASSLBs)的开发已经显示出在固定能量存储设备中的应用潜力,并可能最终成为未来智能电网的重要组成部分。本文从卤素化学的角度对基于不同卤素阴离子的卤化物醚的研究现状进行了分类和总结,在此基础上总结了具有高室温离子电导率的卤化物醚的不同合成路线,并详细比较了基于不同卤素阴离子的卤化物醚在离子电导率、活化能、电子电导率、界面接触稳定性、并针对上述各电化学指标总结出相应的优化策略。最后,我们展望了ASSLBs尚未解决的挑战和未来的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Building a Better All-Solid-State Lithium-Ion Battery with Halide Solid-State Electrolyte

Building a Better All-Solid-State Lithium-Ion Battery with Halide Solid-State Electrolyte

Since the electrochemical potential of lithium metal was systematically elaborated and measured in the early 19th century, lithium-ion batteries with liquid organic electrolyte have been a key energy storage device and successfully commercialized at the end of the 20th century. Although lithium-ion battery technology has progressed enormously in recent years, it still suffers from two core issues, intrinsic safety hazard and low energy density. Within approaches to address the core challenges, the development of all-solid-state lithium-ion batteries (ASSLBs) based on halide solid-state electrolytes (SSEs) has displayed potential for application in stationary energy storage devices and may eventually become an essential component of a future smart grid. In this Review, we categorize and summarize the current research status of halide SSEs based on different halogen anions from the perspective of halogen chemistry, upon which we summarize the different synthetic routes of halide SSEs possessing high room-temperature ionic conductivity, and compare in detail the performance of halide SSEs based on different halogen anions in terms of ionic conductivity, activation energy, electronic conductivity, interfacial contact stability, and electrochemical window and summarize the corresponding optimization strategies for each of the above-mentioned electrochemical indicators. Finally, we provide an outlook on the unresolved challenges and future opportunities of ASSLBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信