Pt单原子与高熵合金纳米颗粒配对用于高级锂氧电池的双催化活性位点调整

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lei Li, Minghao Hua, Jiafeng Li, Peng Zhang, Yingjian Nie, Peng Wang*, Xiaohang Lin, Zhiwei Zhang*, Rutao Wang, Xiaoli Ge*, Yuguang C. Li* and Longwei Yin*, 
{"title":"Pt单原子与高熵合金纳米颗粒配对用于高级锂氧电池的双催化活性位点调整","authors":"Lei Li,&nbsp;Minghao Hua,&nbsp;Jiafeng Li,&nbsp;Peng Zhang,&nbsp;Yingjian Nie,&nbsp;Peng Wang*,&nbsp;Xiaohang Lin,&nbsp;Zhiwei Zhang*,&nbsp;Rutao Wang,&nbsp;Xiaoli Ge*,&nbsp;Yuguang C. Li* and Longwei Yin*,&nbsp;","doi":"10.1021/acsnano.4c1249910.1021/acsnano.4c12499","DOIUrl":null,"url":null,"abstract":"<p >To achieve a long cycle life and high-capacity performance for Li-O<sub>2</sub> batteries, it is critical to rationally modulate the formation and decomposition pathway of the discharge product Li<sub>2</sub>O<sub>2</sub>. Herein, we designed a highly efficient catalyst containing dual catalytic active sites of Pt single atoms (Pt<sub>SAs</sub>) paired with high-entropy alloy (HEA) nanoparticles for oxygen reduction reaction (ORR) in Li-O<sub>2</sub> batteries. HEA is designed with a moderate d-band center to enhance the surface adsorbed LiO<sub>2</sub> intermediate (LiO<sub>2</sub>(ads)), while Pt<sub>SAs</sub> active sites exhibit weak adsorption energy and promote the soluble LiO<sub>2</sub> pathway (LiO<sub>2</sub>(sol)). An optimal ratio between LiO<sub>2</sub>(ads) and LiO<sub>2</sub>(sol) pathway was realized to modulate Pt<sub>SAs</sub> and HEA active sites via regulating the etching conditions in the dealloying synthesis process for obtaining high-performance Li-O<sub>2</sub> batteries. The ORR kinetics are accelerated, and the parasitic reactions are restrained in the Li-O<sub>2</sub> batteries. As a result, Li-O<sub>2</sub> batteries based on the HEA@Pt-Pt<sub>SAs</sub> catalyst demonstrate an ultralow overpotential (0.3 V) and ultralong cycling performance of 470 cycles at 1000 mA g<sup>–1</sup>. The insights into the synthetic strategies and the importance of balancing the ORR pathways will offer guidance for devising multisite synergistic catalysts to accelerate redox-reaction kinetics for Li-O<sub>2</sub> batteries.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 4","pages":"4391–4402 4391–4402"},"PeriodicalIF":16.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning Dual Catalytic Active Sites of Pt Single Atoms Paired with High-Entropy Alloy Nanoparticles for Advanced Li-O2 Batteries\",\"authors\":\"Lei Li,&nbsp;Minghao Hua,&nbsp;Jiafeng Li,&nbsp;Peng Zhang,&nbsp;Yingjian Nie,&nbsp;Peng Wang*,&nbsp;Xiaohang Lin,&nbsp;Zhiwei Zhang*,&nbsp;Rutao Wang,&nbsp;Xiaoli Ge*,&nbsp;Yuguang C. Li* and Longwei Yin*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c1249910.1021/acsnano.4c12499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >To achieve a long cycle life and high-capacity performance for Li-O<sub>2</sub> batteries, it is critical to rationally modulate the formation and decomposition pathway of the discharge product Li<sub>2</sub>O<sub>2</sub>. Herein, we designed a highly efficient catalyst containing dual catalytic active sites of Pt single atoms (Pt<sub>SAs</sub>) paired with high-entropy alloy (HEA) nanoparticles for oxygen reduction reaction (ORR) in Li-O<sub>2</sub> batteries. HEA is designed with a moderate d-band center to enhance the surface adsorbed LiO<sub>2</sub> intermediate (LiO<sub>2</sub>(ads)), while Pt<sub>SAs</sub> active sites exhibit weak adsorption energy and promote the soluble LiO<sub>2</sub> pathway (LiO<sub>2</sub>(sol)). An optimal ratio between LiO<sub>2</sub>(ads) and LiO<sub>2</sub>(sol) pathway was realized to modulate Pt<sub>SAs</sub> and HEA active sites via regulating the etching conditions in the dealloying synthesis process for obtaining high-performance Li-O<sub>2</sub> batteries. The ORR kinetics are accelerated, and the parasitic reactions are restrained in the Li-O<sub>2</sub> batteries. As a result, Li-O<sub>2</sub> batteries based on the HEA@Pt-Pt<sub>SAs</sub> catalyst demonstrate an ultralow overpotential (0.3 V) and ultralong cycling performance of 470 cycles at 1000 mA g<sup>–1</sup>. The insights into the synthetic strategies and the importance of balancing the ORR pathways will offer guidance for devising multisite synergistic catalysts to accelerate redox-reaction kinetics for Li-O<sub>2</sub> batteries.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 4\",\"pages\":\"4391–4402 4391–4402\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c12499\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c12499","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了实现锂氧电池的长循环寿命和高容量性能,合理调节放电产物Li2O2的形成和分解途径至关重要。在此,我们设计了一种含有Pt单原子(PtSAs)与高熵合金(HEA)纳米粒子配对的双催化活性位点的高效催化剂,用于Li-O2电池的氧还原反应(ORR)。HEA设计了一个中等的d波段中心,以增强表面吸附LiO2中间体(LiO2(ads)),而PtSAs活性位点表现出弱吸附能,促进可溶性LiO2途径(LiO2(sol))。实现了LiO2(ads)和LiO2(sol)的最佳配比途径,通过调节脱合金合成过程中的蚀刻条件来调节PtSAs和HEA活性位点,从而获得高性能Li-O2电池。在锂氧电池中加速了ORR动力学,抑制了寄生反应。因此,基于HEA@Pt-PtSAs催化剂的Li-O2电池表现出超低过电位(0.3 V)和1000 mA g-1下470次的超长循环性能。对合成策略和平衡ORR途径的重要性的见解将为设计多位点协同催化剂以加速Li-O2电池的氧化还原反应动力学提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tuning Dual Catalytic Active Sites of Pt Single Atoms Paired with High-Entropy Alloy Nanoparticles for Advanced Li-O2 Batteries

Tuning Dual Catalytic Active Sites of Pt Single Atoms Paired with High-Entropy Alloy Nanoparticles for Advanced Li-O2 Batteries

To achieve a long cycle life and high-capacity performance for Li-O2 batteries, it is critical to rationally modulate the formation and decomposition pathway of the discharge product Li2O2. Herein, we designed a highly efficient catalyst containing dual catalytic active sites of Pt single atoms (PtSAs) paired with high-entropy alloy (HEA) nanoparticles for oxygen reduction reaction (ORR) in Li-O2 batteries. HEA is designed with a moderate d-band center to enhance the surface adsorbed LiO2 intermediate (LiO2(ads)), while PtSAs active sites exhibit weak adsorption energy and promote the soluble LiO2 pathway (LiO2(sol)). An optimal ratio between LiO2(ads) and LiO2(sol) pathway was realized to modulate PtSAs and HEA active sites via regulating the etching conditions in the dealloying synthesis process for obtaining high-performance Li-O2 batteries. The ORR kinetics are accelerated, and the parasitic reactions are restrained in the Li-O2 batteries. As a result, Li-O2 batteries based on the HEA@Pt-PtSAs catalyst demonstrate an ultralow overpotential (0.3 V) and ultralong cycling performance of 470 cycles at 1000 mA g–1. The insights into the synthetic strategies and the importance of balancing the ORR pathways will offer guidance for devising multisite synergistic catalysts to accelerate redox-reaction kinetics for Li-O2 batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信