Wei Li, Jing Li, Lebing Wang, Yan Wang, Zhirui Zhang, Shilong Liu, Bo Gong, Yunjiao Wang* and Liang Wang*,
{"title":"纳米孔在多种DNA环境中区分沃森-克里克和胡格斯汀氢键","authors":"Wei Li, Jing Li, Lebing Wang, Yan Wang, Zhirui Zhang, Shilong Liu, Bo Gong, Yunjiao Wang* and Liang Wang*, ","doi":"10.1021/acs.nanolett.4c0606710.1021/acs.nanolett.4c06067","DOIUrl":null,"url":null,"abstract":"<p >Watson–Crick and Hoogsteen hydrogen bonds aid the formation of highly ordered structures in genomic DNA that dynamically govern genetic modes such as gene regulation and replication. Hence, measuring and distinguishing these two types of hydrogen bonds in different DNA contexts are essential for understanding DNA architectures. However, due to their transient nature and minimal structure differences at the sub-nanometer scale, differentiating Watson–Crick hydrogen bonds from Hoogsteen hydrogen bonds is difficult. Relying on nanopore technology, we successfully discriminated the two types of hydrogen bonds in multiple DNA contexts in the presence of epigenetic modification, changes in DNA structures, and proton strength in the environment. Our results indicate that Watson–Crick and Hoogsteen hydrogen bonds show different susceptibilities to changes in physicochemical characteristics that matter in stabilizing DNA hydrogen bonds. This work provides insight into the features of hydrogen bonds at the nanoscale and may benefit profiling complex DNA architectures by measuring subtle structural changes.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 4","pages":"1706–1714 1706–1714"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanopore Discriminates Watson–Crick and Hoogsteen Hydrogen Bonds in Multiple DNA Contexts\",\"authors\":\"Wei Li, Jing Li, Lebing Wang, Yan Wang, Zhirui Zhang, Shilong Liu, Bo Gong, Yunjiao Wang* and Liang Wang*, \",\"doi\":\"10.1021/acs.nanolett.4c0606710.1021/acs.nanolett.4c06067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Watson–Crick and Hoogsteen hydrogen bonds aid the formation of highly ordered structures in genomic DNA that dynamically govern genetic modes such as gene regulation and replication. Hence, measuring and distinguishing these two types of hydrogen bonds in different DNA contexts are essential for understanding DNA architectures. However, due to their transient nature and minimal structure differences at the sub-nanometer scale, differentiating Watson–Crick hydrogen bonds from Hoogsteen hydrogen bonds is difficult. Relying on nanopore technology, we successfully discriminated the two types of hydrogen bonds in multiple DNA contexts in the presence of epigenetic modification, changes in DNA structures, and proton strength in the environment. Our results indicate that Watson–Crick and Hoogsteen hydrogen bonds show different susceptibilities to changes in physicochemical characteristics that matter in stabilizing DNA hydrogen bonds. This work provides insight into the features of hydrogen bonds at the nanoscale and may benefit profiling complex DNA architectures by measuring subtle structural changes.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 4\",\"pages\":\"1706–1714 1706–1714\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c06067\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c06067","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanopore Discriminates Watson–Crick and Hoogsteen Hydrogen Bonds in Multiple DNA Contexts
Watson–Crick and Hoogsteen hydrogen bonds aid the formation of highly ordered structures in genomic DNA that dynamically govern genetic modes such as gene regulation and replication. Hence, measuring and distinguishing these two types of hydrogen bonds in different DNA contexts are essential for understanding DNA architectures. However, due to their transient nature and minimal structure differences at the sub-nanometer scale, differentiating Watson–Crick hydrogen bonds from Hoogsteen hydrogen bonds is difficult. Relying on nanopore technology, we successfully discriminated the two types of hydrogen bonds in multiple DNA contexts in the presence of epigenetic modification, changes in DNA structures, and proton strength in the environment. Our results indicate that Watson–Crick and Hoogsteen hydrogen bonds show different susceptibilities to changes in physicochemical characteristics that matter in stabilizing DNA hydrogen bonds. This work provides insight into the features of hydrogen bonds at the nanoscale and may benefit profiling complex DNA architectures by measuring subtle structural changes.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.