细胞打印的体积增材制造:桥接行业适应和监管前沿

IF 5.5 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Vidhi Mathur, Vinita Dsouza, Varadharajan Srinivasan* and Kirthanashri S Vasanthan*, 
{"title":"细胞打印的体积增材制造:桥接行业适应和监管前沿","authors":"Vidhi Mathur,&nbsp;Vinita Dsouza,&nbsp;Varadharajan Srinivasan* and Kirthanashri S Vasanthan*,&nbsp;","doi":"10.1021/acsbiomaterials.4c0183710.1021/acsbiomaterials.4c01837","DOIUrl":null,"url":null,"abstract":"<p >Volumetric additive manufacturing (VAM) is revolutionizing the field of cell printing by enabling the rapid creation of complex three-dimensional cellular structures that mimic natural tissues. This paper explores the advantages and limitations of various VAM techniques, such as holographic lithography, digital light processing, and volumetric projection, while addressing their suitability across diverse industrial applications. Despite the significant potential of VAM, challenges related to regulatory compliance and scalability persist, particularly in the context of bioprinted tissues. In India, the lack of clear regulatory guidelines and intellectual property protections poses additional hurdles for companies seeking to navigate the evolving landscape of bioprinting. This study emphasizes the importance of collaboration among industry stakeholders, regulatory agencies, and academic institutions to establish tailored frameworks that promote innovation while ensuring safety and efficacy. By bridging the gap between technological advancement and regulatory oversight, VAM can unlock new opportunities in regenerative medicine and tissue engineering, transforming patient care and therapeutic outcomes.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":"11 1","pages":"156–181 156–181"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsbiomaterials.4c01837","citationCount":"0","resultStr":"{\"title\":\"Volumetric Additive Manufacturing for Cell Printing: Bridging Industry Adaptation and Regulatory Frontiers\",\"authors\":\"Vidhi Mathur,&nbsp;Vinita Dsouza,&nbsp;Varadharajan Srinivasan* and Kirthanashri S Vasanthan*,&nbsp;\",\"doi\":\"10.1021/acsbiomaterials.4c0183710.1021/acsbiomaterials.4c01837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Volumetric additive manufacturing (VAM) is revolutionizing the field of cell printing by enabling the rapid creation of complex three-dimensional cellular structures that mimic natural tissues. This paper explores the advantages and limitations of various VAM techniques, such as holographic lithography, digital light processing, and volumetric projection, while addressing their suitability across diverse industrial applications. Despite the significant potential of VAM, challenges related to regulatory compliance and scalability persist, particularly in the context of bioprinted tissues. In India, the lack of clear regulatory guidelines and intellectual property protections poses additional hurdles for companies seeking to navigate the evolving landscape of bioprinting. This study emphasizes the importance of collaboration among industry stakeholders, regulatory agencies, and academic institutions to establish tailored frameworks that promote innovation while ensuring safety and efficacy. By bridging the gap between technological advancement and regulatory oversight, VAM can unlock new opportunities in regenerative medicine and tissue engineering, transforming patient care and therapeutic outcomes.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":\"11 1\",\"pages\":\"156–181 156–181\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsbiomaterials.4c01837\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c01837\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomaterials.4c01837","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

体积增材制造(VAM)通过能够快速创建模拟自然组织的复杂三维细胞结构,正在彻底改变细胞打印领域。本文探讨了各种VAM技术的优点和局限性,如全息光刻,数字光处理和体投影,同时解决了它们在不同工业应用中的适用性。尽管VAM具有巨大的潜力,但与法规遵从性和可扩展性相关的挑战仍然存在,特别是在生物打印组织的背景下。在印度,缺乏明确的监管指导方针和知识产权保护,给寻求驾驭不断变化的生物打印领域的公司带来了额外的障碍。本研究强调了行业利益相关者、监管机构和学术机构之间合作的重要性,以建立量身定制的框架,在确保安全性和有效性的同时促进创新。通过弥合技术进步和监管监督之间的差距,VAM可以为再生医学和组织工程带来新的机会,改变患者护理和治疗结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Volumetric Additive Manufacturing for Cell Printing: Bridging Industry Adaptation and Regulatory Frontiers

Volumetric additive manufacturing (VAM) is revolutionizing the field of cell printing by enabling the rapid creation of complex three-dimensional cellular structures that mimic natural tissues. This paper explores the advantages and limitations of various VAM techniques, such as holographic lithography, digital light processing, and volumetric projection, while addressing their suitability across diverse industrial applications. Despite the significant potential of VAM, challenges related to regulatory compliance and scalability persist, particularly in the context of bioprinted tissues. In India, the lack of clear regulatory guidelines and intellectual property protections poses additional hurdles for companies seeking to navigate the evolving landscape of bioprinting. This study emphasizes the importance of collaboration among industry stakeholders, regulatory agencies, and academic institutions to establish tailored frameworks that promote innovation while ensuring safety and efficacy. By bridging the gap between technological advancement and regulatory oversight, VAM can unlock new opportunities in regenerative medicine and tissue engineering, transforming patient care and therapeutic outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信