用于快速光热消毒的电子废弃物等离子体cu仿生密闭组装

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zewei Hao, Jingyu Sun, Jiabin Chen*, Yinchuan Yang, Xiaoqi Sun, Ruicheng Ji, Qipeng Zhao, Xuefei Zhou, Hongbo Zeng and Yalei Zhang*, 
{"title":"用于快速光热消毒的电子废弃物等离子体cu仿生密闭组装","authors":"Zewei Hao,&nbsp;Jingyu Sun,&nbsp;Jiabin Chen*,&nbsp;Yinchuan Yang,&nbsp;Xiaoqi Sun,&nbsp;Ruicheng Ji,&nbsp;Qipeng Zhao,&nbsp;Xuefei Zhou,&nbsp;Hongbo Zeng and Yalei Zhang*,&nbsp;","doi":"10.1021/acsnano.4c1770210.1021/acsnano.4c17702","DOIUrl":null,"url":null,"abstract":"<p >Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range. The resulting plasmon resonance effect generates abundant high-energy hot carriers, further enhancing the separation efficiency of carriers generated by plasmon-induced intrinsic excitation. The nonradiative dissipation of these carriers triggers a significant localized heating effect in water matrices, leading to comprehensive PTD performance against <i>E. coli</i> and <i>B. subtilis</i>. This study highlights the role of the plasmonic heating effect from waste-derived photosensitizers in enhancing PTD performance, inspiring the development of advanced water disinfection technologies.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 4","pages":"5005–5016 5005–5016"},"PeriodicalIF":16.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic Confined Assembly of Plasmonic CuS from Electronic Waste for Rapid Photothermal Disinfection\",\"authors\":\"Zewei Hao,&nbsp;Jingyu Sun,&nbsp;Jiabin Chen*,&nbsp;Yinchuan Yang,&nbsp;Xiaoqi Sun,&nbsp;Ruicheng Ji,&nbsp;Qipeng Zhao,&nbsp;Xuefei Zhou,&nbsp;Hongbo Zeng and Yalei Zhang*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c1770210.1021/acsnano.4c17702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range. The resulting plasmon resonance effect generates abundant high-energy hot carriers, further enhancing the separation efficiency of carriers generated by plasmon-induced intrinsic excitation. The nonradiative dissipation of these carriers triggers a significant localized heating effect in water matrices, leading to comprehensive PTD performance against <i>E. coli</i> and <i>B. subtilis</i>. This study highlights the role of the plasmonic heating effect from waste-derived photosensitizers in enhancing PTD performance, inspiring the development of advanced water disinfection technologies.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 4\",\"pages\":\"5005–5016 5005–5016\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c17702\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c17702","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光热消毒(PTD)由于其可持续和广谱的杀菌特性,为水净化提供了广阔的潜力,尽管它受到光敏剂中缓慢电荷分离的阻碍。在此,我们提出了一种等离子体介导的PTD技术,利用特定波长入射光诱导的有效局部加热效应来快速灭活细菌。通过仿生跨膜限制组装策略从电子废物中提取金属Cu光敏剂,促进近红外范围内Cu原子周围自由电子的集体和相干振荡。等离子体共振效应产生了丰富的高能热载子,进一步提高了等离子体诱导本征激发产生的载流子的分离效率。这些载体的非辐射耗散在水基质中触发了显著的局部加热效应,导致对大肠杆菌和枯草芽孢杆菌的全面PTD性能。本研究强调了废物光敏剂的等离子体加热效应在提高PTD性能中的作用,激发了先进水消毒技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biomimetic Confined Assembly of Plasmonic CuS from Electronic Waste for Rapid Photothermal Disinfection

Biomimetic Confined Assembly of Plasmonic CuS from Electronic Waste for Rapid Photothermal Disinfection

Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range. The resulting plasmon resonance effect generates abundant high-energy hot carriers, further enhancing the separation efficiency of carriers generated by plasmon-induced intrinsic excitation. The nonradiative dissipation of these carriers triggers a significant localized heating effect in water matrices, leading to comprehensive PTD performance against E. coli and B. subtilis. This study highlights the role of the plasmonic heating effect from waste-derived photosensitizers in enhancing PTD performance, inspiring the development of advanced water disinfection technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信