{"title":"用于快速光热消毒的电子废弃物等离子体cu仿生密闭组装","authors":"Zewei Hao, Jingyu Sun, Jiabin Chen*, Yinchuan Yang, Xiaoqi Sun, Ruicheng Ji, Qipeng Zhao, Xuefei Zhou, Hongbo Zeng and Yalei Zhang*, ","doi":"10.1021/acsnano.4c1770210.1021/acsnano.4c17702","DOIUrl":null,"url":null,"abstract":"<p >Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range. The resulting plasmon resonance effect generates abundant high-energy hot carriers, further enhancing the separation efficiency of carriers generated by plasmon-induced intrinsic excitation. The nonradiative dissipation of these carriers triggers a significant localized heating effect in water matrices, leading to comprehensive PTD performance against <i>E. coli</i> and <i>B. subtilis</i>. This study highlights the role of the plasmonic heating effect from waste-derived photosensitizers in enhancing PTD performance, inspiring the development of advanced water disinfection technologies.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 4","pages":"5005–5016 5005–5016"},"PeriodicalIF":16.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic Confined Assembly of Plasmonic CuS from Electronic Waste for Rapid Photothermal Disinfection\",\"authors\":\"Zewei Hao, Jingyu Sun, Jiabin Chen*, Yinchuan Yang, Xiaoqi Sun, Ruicheng Ji, Qipeng Zhao, Xuefei Zhou, Hongbo Zeng and Yalei Zhang*, \",\"doi\":\"10.1021/acsnano.4c1770210.1021/acsnano.4c17702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range. The resulting plasmon resonance effect generates abundant high-energy hot carriers, further enhancing the separation efficiency of carriers generated by plasmon-induced intrinsic excitation. The nonradiative dissipation of these carriers triggers a significant localized heating effect in water matrices, leading to comprehensive PTD performance against <i>E. coli</i> and <i>B. subtilis</i>. This study highlights the role of the plasmonic heating effect from waste-derived photosensitizers in enhancing PTD performance, inspiring the development of advanced water disinfection technologies.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 4\",\"pages\":\"5005–5016 5005–5016\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c17702\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c17702","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Biomimetic Confined Assembly of Plasmonic CuS from Electronic Waste for Rapid Photothermal Disinfection
Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range. The resulting plasmon resonance effect generates abundant high-energy hot carriers, further enhancing the separation efficiency of carriers generated by plasmon-induced intrinsic excitation. The nonradiative dissipation of these carriers triggers a significant localized heating effect in water matrices, leading to comprehensive PTD performance against E. coli and B. subtilis. This study highlights the role of the plasmonic heating effect from waste-derived photosensitizers in enhancing PTD performance, inspiring the development of advanced water disinfection technologies.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.