高灵敏度NO2气体传感器:利用紫外线增强回收六氟化铁酞菁还原氧化石墨烯

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
John A. Cruz Lozada, Ricardo A. Rosario, Soraya Y. Flores, Kim Kisslinger, Luis F. Fonseca and Dalice M. Piñero Cruz*, 
{"title":"高灵敏度NO2气体传感器:利用紫外线增强回收六氟化铁酞菁还原氧化石墨烯","authors":"John A. Cruz Lozada,&nbsp;Ricardo A. Rosario,&nbsp;Soraya Y. Flores,&nbsp;Kim Kisslinger,&nbsp;Luis F. Fonseca and Dalice M. Piñero Cruz*,&nbsp;","doi":"10.1021/acsomega.4c0866210.1021/acsomega.4c08662","DOIUrl":null,"url":null,"abstract":"<p >Monitoring ultralow nitrogen dioxide (NO<sub>2</sub>) concentrations is crucial for air quality management and public health. However, the existing NO<sub>2</sub> gas sensors have several defects, like high cost and power consumption, and exhibit poor selectivity. This study addresses these challenges by presenting a novel hexadecafluorinated iron phthalocyanine-reduced graphene oxide (FePcF<sub>16</sub>-rGO) covalent hybrid sensor for NO<sub>2</sub> detection. This innovative approach, which overcomes the limitations of fabrication cost, energy efficiency, and gas selectivity, is a significant step forward in gas sensor technology. The sensor demonstrates exceptional sensitivity toward ultralow NO<sub>2</sub> concentrations (15.14% response for 100 ppb) with a rapid 60 s UV light-induced recovery. Additionally, the sensor exhibits high selectivity for NO<sub>2</sub>, achieving a limit of detection (LOD) of 8.59 ppb. This approach paves the way for developing cost-effective, energy-efficient, and miniature NO<sub>2</sub> monitoring devices for improved environmental monitoring and enhanced safety in workplaces where NO<sub>2</sub> exposure is a concern.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 3","pages":"2809–2818 2809–2818"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c08662","citationCount":"0","resultStr":"{\"title\":\"High-Sensitivity NO2 Gas Sensor: Exploiting UV-Enhanced Recovery in a Hexadecafluorinated Iron Phthalocyanine-Reduced Graphene Oxide\",\"authors\":\"John A. Cruz Lozada,&nbsp;Ricardo A. Rosario,&nbsp;Soraya Y. Flores,&nbsp;Kim Kisslinger,&nbsp;Luis F. Fonseca and Dalice M. Piñero Cruz*,&nbsp;\",\"doi\":\"10.1021/acsomega.4c0866210.1021/acsomega.4c08662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Monitoring ultralow nitrogen dioxide (NO<sub>2</sub>) concentrations is crucial for air quality management and public health. However, the existing NO<sub>2</sub> gas sensors have several defects, like high cost and power consumption, and exhibit poor selectivity. This study addresses these challenges by presenting a novel hexadecafluorinated iron phthalocyanine-reduced graphene oxide (FePcF<sub>16</sub>-rGO) covalent hybrid sensor for NO<sub>2</sub> detection. This innovative approach, which overcomes the limitations of fabrication cost, energy efficiency, and gas selectivity, is a significant step forward in gas sensor technology. The sensor demonstrates exceptional sensitivity toward ultralow NO<sub>2</sub> concentrations (15.14% response for 100 ppb) with a rapid 60 s UV light-induced recovery. Additionally, the sensor exhibits high selectivity for NO<sub>2</sub>, achieving a limit of detection (LOD) of 8.59 ppb. This approach paves the way for developing cost-effective, energy-efficient, and miniature NO<sub>2</sub> monitoring devices for improved environmental monitoring and enhanced safety in workplaces where NO<sub>2</sub> exposure is a concern.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 3\",\"pages\":\"2809–2818 2809–2818\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c08662\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsomega.4c08662\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c08662","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

监测超低二氧化氮(NO2)浓度对空气质量管理和公众健康至关重要。然而,现有的二氧化氮气体传感器存在成本高、功耗大、选择性差等缺陷。本研究通过提出一种用于NO2检测的新型六氟化铁酞菁还原氧化石墨烯(FePcF16-rGO)共价混合传感器来解决这些挑战。这种创新的方法克服了制造成本、能源效率和气体选择性的限制,是气体传感器技术向前迈出的重要一步。该传感器对超低NO2浓度表现出优异的灵敏度(100 ppb时响应率为15.14%),并具有60 s的紫外诱导快速恢复。此外,该传感器对NO2具有高选择性,检测限(LOD)为8.59 ppb。这种方法为开发具有成本效益,节能和微型二氧化氮监测设备铺平了道路,以改善环境监测和提高二氧化氮暴露的工作场所的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Sensitivity NO2 Gas Sensor: Exploiting UV-Enhanced Recovery in a Hexadecafluorinated Iron Phthalocyanine-Reduced Graphene Oxide

Monitoring ultralow nitrogen dioxide (NO2) concentrations is crucial for air quality management and public health. However, the existing NO2 gas sensors have several defects, like high cost and power consumption, and exhibit poor selectivity. This study addresses these challenges by presenting a novel hexadecafluorinated iron phthalocyanine-reduced graphene oxide (FePcF16-rGO) covalent hybrid sensor for NO2 detection. This innovative approach, which overcomes the limitations of fabrication cost, energy efficiency, and gas selectivity, is a significant step forward in gas sensor technology. The sensor demonstrates exceptional sensitivity toward ultralow NO2 concentrations (15.14% response for 100 ppb) with a rapid 60 s UV light-induced recovery. Additionally, the sensor exhibits high selectivity for NO2, achieving a limit of detection (LOD) of 8.59 ppb. This approach paves the way for developing cost-effective, energy-efficient, and miniature NO2 monitoring devices for improved environmental monitoring and enhanced safety in workplaces where NO2 exposure is a concern.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信