Neelakandan M Santhosh*, Suraj Gupta, Vasyl Shvalya, Martin Košiček, Janez Zavašnik and Uroš Cvelbar*,
{"title":"双相硫化镍纳米结构的析氧催化进展","authors":"Neelakandan M Santhosh*, Suraj Gupta, Vasyl Shvalya, Martin Košiček, Janez Zavašnik and Uroš Cvelbar*, ","doi":"10.1021/acs.energyfuels.4c0518210.1021/acs.energyfuels.4c05182","DOIUrl":null,"url":null,"abstract":"<p >The production, conversion and storage of energy based on electrocatalysis, mainly assisted by oxygen evolution reaction (OER), plays a crucial role in alkaline water electrolyzers (AWEs) and fuel cells. Nevertheless, the insufficient availability of highly efficient catalyst materials at a reasonable cost that overcome the sluggish electrochemical kinetics of the OER is one of the significant obstacles. Herein, we report a fast and facile synthesis of vapor phase deposition of dual-phase nickel sulfide (Ni-sulfide) using low-temperature annealing in the presence of H<sub>2</sub>S and demonstrated as an efficient catalyst for OER to address the issues with sluggish electrochemical kinetics. The dual-phase Ni-sulfide structures consist of densely packed 10–50 μm microcrystals with 40–50 individual dual-phase layers, such as NiS and Ni<sub>7</sub>S<sub>6</sub>. As an electrocatalyst, the dual-phase Ni-sulfide exhibits excellent OER activity by achieving a current density of 10 mA/cm<sup>2</sup> at an overpotential (η<sub>10</sub>) of 0.29 V and excellent electrochemical stability over 50 h. Besides, the Ni-sulfide displays considerable electrochemical robustness in alkaline conditions and forms OER-active Ni-oxide/hydroxide species during the process. Using an energy-efficient synthesis method, the fabricated unique crystalline nanodesign of dual-phase Ni-sulfide could open new pathways for the controlled synthesis of a high-efficiency group of electrocatalysts for a long-time stable electrochemical catalytic activity.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 2","pages":"1375–1383 1375–1383"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.energyfuels.4c05182","citationCount":"0","resultStr":"{\"title\":\"Advancing Oxygen Evolution Catalysis with Dual-Phase Nickel Sulfide Nanostructures\",\"authors\":\"Neelakandan M Santhosh*, Suraj Gupta, Vasyl Shvalya, Martin Košiček, Janez Zavašnik and Uroš Cvelbar*, \",\"doi\":\"10.1021/acs.energyfuels.4c0518210.1021/acs.energyfuels.4c05182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The production, conversion and storage of energy based on electrocatalysis, mainly assisted by oxygen evolution reaction (OER), plays a crucial role in alkaline water electrolyzers (AWEs) and fuel cells. Nevertheless, the insufficient availability of highly efficient catalyst materials at a reasonable cost that overcome the sluggish electrochemical kinetics of the OER is one of the significant obstacles. Herein, we report a fast and facile synthesis of vapor phase deposition of dual-phase nickel sulfide (Ni-sulfide) using low-temperature annealing in the presence of H<sub>2</sub>S and demonstrated as an efficient catalyst for OER to address the issues with sluggish electrochemical kinetics. The dual-phase Ni-sulfide structures consist of densely packed 10–50 μm microcrystals with 40–50 individual dual-phase layers, such as NiS and Ni<sub>7</sub>S<sub>6</sub>. As an electrocatalyst, the dual-phase Ni-sulfide exhibits excellent OER activity by achieving a current density of 10 mA/cm<sup>2</sup> at an overpotential (η<sub>10</sub>) of 0.29 V and excellent electrochemical stability over 50 h. Besides, the Ni-sulfide displays considerable electrochemical robustness in alkaline conditions and forms OER-active Ni-oxide/hydroxide species during the process. Using an energy-efficient synthesis method, the fabricated unique crystalline nanodesign of dual-phase Ni-sulfide could open new pathways for the controlled synthesis of a high-efficiency group of electrocatalysts for a long-time stable electrochemical catalytic activity.</p>\",\"PeriodicalId\":35,\"journal\":{\"name\":\"Energy & Fuels\",\"volume\":\"39 2\",\"pages\":\"1375–1383 1375–1383\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.energyfuels.4c05182\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Fuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c05182\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c05182","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Advancing Oxygen Evolution Catalysis with Dual-Phase Nickel Sulfide Nanostructures
The production, conversion and storage of energy based on electrocatalysis, mainly assisted by oxygen evolution reaction (OER), plays a crucial role in alkaline water electrolyzers (AWEs) and fuel cells. Nevertheless, the insufficient availability of highly efficient catalyst materials at a reasonable cost that overcome the sluggish electrochemical kinetics of the OER is one of the significant obstacles. Herein, we report a fast and facile synthesis of vapor phase deposition of dual-phase nickel sulfide (Ni-sulfide) using low-temperature annealing in the presence of H2S and demonstrated as an efficient catalyst for OER to address the issues with sluggish electrochemical kinetics. The dual-phase Ni-sulfide structures consist of densely packed 10–50 μm microcrystals with 40–50 individual dual-phase layers, such as NiS and Ni7S6. As an electrocatalyst, the dual-phase Ni-sulfide exhibits excellent OER activity by achieving a current density of 10 mA/cm2 at an overpotential (η10) of 0.29 V and excellent electrochemical stability over 50 h. Besides, the Ni-sulfide displays considerable electrochemical robustness in alkaline conditions and forms OER-active Ni-oxide/hydroxide species during the process. Using an energy-efficient synthesis method, the fabricated unique crystalline nanodesign of dual-phase Ni-sulfide could open new pathways for the controlled synthesis of a high-efficiency group of electrocatalysts for a long-time stable electrochemical catalytic activity.
期刊介绍:
Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.