室温叠氮化物-炔环加成的可见光驱动量子点与铜光催化

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sovan Dey, Mihir Manna, Ram N. Yadav, Md. Firoj Hossain* and Satyapriya Bhandari*, 
{"title":"室温叠氮化物-炔环加成的可见光驱动量子点与铜光催化","authors":"Sovan Dey,&nbsp;Mihir Manna,&nbsp;Ram N. Yadav,&nbsp;Md. Firoj Hossain* and Satyapriya Bhandari*,&nbsp;","doi":"10.1021/acsanm.4c0567010.1021/acsanm.4c05670","DOIUrl":null,"url":null,"abstract":"<p >Advancing efficient and sustainable catalytic systems for organic transformation remains a pivotal objective in contemporary chemistry. This research introduces an innovative method employing visible light-driven quantum dots and copper photocatalysis to achieve azide–alkyne cycloaddition (AAC) reactions at room temperature. The synergistic action of quantum dots (QDs) and copper catalysts under visible light exposure ensures high reaction efficiency and regio-selectivity, offering an ecofriendly and energy-saving alternative to conventional thermal approaches. In this study, CdS QDs play a dual role: they act as electron donors, reducing Cu(II) to Cu(I), and enable rapid reaction completion under visible light, even without an inert atmosphere or any sacrificial electron donor. The use of immiscible solvents allows for easy separation, and CdS QDs exhibit impressive catalytic properties. The reaction demonstrates an impressive turnover number (TON) of 0.96 × 10<sup>6</sup> and turnover frequency (TOF) of 0.16 × 10<sup>6</sup> h<sup>–1</sup>. Furthermore, this work showcases broad substrate compatibility, tolerating various functional groups and achieving excellent yields of up to 99% in a shorter time of 6 h, thus establishing it as a versatile strategy for synthesizing 1,2,3-triazoles. This study underscores the potential of merging QD photocatalysis with metal catalysis to promote the advancement of sustainable chemical processes.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 4","pages":"1700–1708 1700–1708"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visible Light-Driven Quantum Dot and Copper Photocatalysis for Room Temperature Azide–Alkyne Cycloaddition\",\"authors\":\"Sovan Dey,&nbsp;Mihir Manna,&nbsp;Ram N. Yadav,&nbsp;Md. Firoj Hossain* and Satyapriya Bhandari*,&nbsp;\",\"doi\":\"10.1021/acsanm.4c0567010.1021/acsanm.4c05670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Advancing efficient and sustainable catalytic systems for organic transformation remains a pivotal objective in contemporary chemistry. This research introduces an innovative method employing visible light-driven quantum dots and copper photocatalysis to achieve azide–alkyne cycloaddition (AAC) reactions at room temperature. The synergistic action of quantum dots (QDs) and copper catalysts under visible light exposure ensures high reaction efficiency and regio-selectivity, offering an ecofriendly and energy-saving alternative to conventional thermal approaches. In this study, CdS QDs play a dual role: they act as electron donors, reducing Cu(II) to Cu(I), and enable rapid reaction completion under visible light, even without an inert atmosphere or any sacrificial electron donor. The use of immiscible solvents allows for easy separation, and CdS QDs exhibit impressive catalytic properties. The reaction demonstrates an impressive turnover number (TON) of 0.96 × 10<sup>6</sup> and turnover frequency (TOF) of 0.16 × 10<sup>6</sup> h<sup>–1</sup>. Furthermore, this work showcases broad substrate compatibility, tolerating various functional groups and achieving excellent yields of up to 99% in a shorter time of 6 h, thus establishing it as a versatile strategy for synthesizing 1,2,3-triazoles. This study underscores the potential of merging QD photocatalysis with metal catalysis to promote the advancement of sustainable chemical processes.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 4\",\"pages\":\"1700–1708 1700–1708\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c05670\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c05670","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

推进高效和可持续的有机转化催化系统仍然是当代化学的关键目标。本研究介绍了一种利用可见光驱动量子点和铜光催化在室温下实现叠氮-炔环加成反应的创新方法。量子点(QDs)和铜催化剂在可见光照射下的协同作用确保了高反应效率和区域选择性,为传统的热方法提供了一种环保和节能的替代方案。在本研究中,CdS量子点发挥双重作用:它们作为电子供体,将Cu(II)还原为Cu(I),并且即使在没有惰性气氛或任何牺牲电子供体的情况下,也能在可见光下快速完成反应。使用不混溶溶剂可以很容易地分离,并且CdS量子点表现出令人印象深刻的催化性能。该反应显示出令人印象深刻的周转率(TON)为0.96 × 106,周转率(TOF)为0.16 × 106 h-1。此外,这项工作展示了广泛的底物相容性,耐受各种官能团,并在较短的6小时内实现了高达99%的优异产率,从而使其成为合成1,2,3-三唑的通用策略。这项研究强调了将量子点光催化与金属催化相结合以促进可持续化学过程的发展的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Visible Light-Driven Quantum Dot and Copper Photocatalysis for Room Temperature Azide–Alkyne Cycloaddition

Visible Light-Driven Quantum Dot and Copper Photocatalysis for Room Temperature Azide–Alkyne Cycloaddition

Advancing efficient and sustainable catalytic systems for organic transformation remains a pivotal objective in contemporary chemistry. This research introduces an innovative method employing visible light-driven quantum dots and copper photocatalysis to achieve azide–alkyne cycloaddition (AAC) reactions at room temperature. The synergistic action of quantum dots (QDs) and copper catalysts under visible light exposure ensures high reaction efficiency and regio-selectivity, offering an ecofriendly and energy-saving alternative to conventional thermal approaches. In this study, CdS QDs play a dual role: they act as electron donors, reducing Cu(II) to Cu(I), and enable rapid reaction completion under visible light, even without an inert atmosphere or any sacrificial electron donor. The use of immiscible solvents allows for easy separation, and CdS QDs exhibit impressive catalytic properties. The reaction demonstrates an impressive turnover number (TON) of 0.96 × 106 and turnover frequency (TOF) of 0.16 × 106 h–1. Furthermore, this work showcases broad substrate compatibility, tolerating various functional groups and achieving excellent yields of up to 99% in a shorter time of 6 h, thus establishing it as a versatile strategy for synthesizing 1,2,3-triazoles. This study underscores the potential of merging QD photocatalysis with metal catalysis to promote the advancement of sustainable chemical processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信